Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Barratt, Mark

  • Google
  • 2
  • 5
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2004The effect of VAR process parameters on white spot formation in INCONEL 7188citations
  • 2004A simple transient numerical model for heat transfer and shape evolution during the production of rings by centrifugal spray deposition2citations

Places of action

Chart of shared publication
Wang, Xianhui
1 / 1 shared
Jacobs, Michael
2 / 4 shared
Ward, Mark
2 / 25 shared
Zhang, Zhu
1 / 1 shared
Dowson, Anthony
1 / 3 shared
Chart of publication period
2004

Co-Authors (by relevance)

  • Wang, Xianhui
  • Jacobs, Michael
  • Ward, Mark
  • Zhang, Zhu
  • Dowson, Anthony
OrganizationsLocationPeople

article

A simple transient numerical model for heat transfer and shape evolution during the production of rings by centrifugal spray deposition

  • Barratt, Mark
  • Zhang, Zhu
  • Dowson, Anthony
  • Jacobs, Michael
  • Ward, Mark
Abstract

Centrifugal spray deposition, the atomisation of a liquid metal by centrifugal force and the subsequent collection of the atomised droplets on a reciprocating collector, is currently being developed for the production of high performance Fe, Ni and Ti based ring-shaped components for use in aerospace and gas turbine containment applications. The process combines the technical, economic and metallurgical benefits of more conventional gas-assisted spray forming techniques with the advantage that it can easily operate under vacuum, reducing potential problems from gas entrapment and thermally induced porosity. In order to aid process development, understanding and optimisation, a transient numerical heat and mass transfer model has been developed that is capable of predicting the evolution of the deposit temperature distribution during spraying. The model has been validated experimentally using thermocouple measurements obtained during the production of 35 kg (340 mm diameter) IN718 rings and qualitative correlations have been observed between the predicted data and the type/distribution of porosity and second phase precipitates in the deposit. The model is currently being further developed and integrated with droplet size distribution and cooling models to provide a better insight into the physics and operational parameters which control deposit shape and microstructure. (C) 2004 Kluwer Academic Publishers.

Topics
  • Deposition
  • impedance spectroscopy
  • phase
  • precipitate
  • forming
  • porosity