Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Savijärvi, A.-M.

  • Google
  • 1
  • 3
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2004The dependence of tear behaviour on the microstructure of biaxially drawn polyester film13citations

Places of action

Chart of shared publication
Mackerron, D. H.
1 / 2 shared
Kuusipalo, Jurkka
1 / 14 shared
Norval, S.
1 / 3 shared
Chart of publication period
2004

Co-Authors (by relevance)

  • Mackerron, D. H.
  • Kuusipalo, Jurkka
  • Norval, S.
OrganizationsLocationPeople

article

The dependence of tear behaviour on the microstructure of biaxially drawn polyester film

  • Mackerron, D. H.
  • Kuusipalo, Jurkka
  • Norval, S.
  • Savijärvi, A.-M.
Abstract

<p>The structure-property relationship between a biaxially oriented film from poly(ethylene terephthalate) and its fracture behaviour measured using the Trouser Tear method, has been explored. X-ray diffraction (XRD) was used to characterise the orientation distribution of crystalline and non-crystalline material in the plane of the film and compared with the fracture energy, G(c) measured in four directions during tearing. The fracture energy averaged over the four directions ranged between 12 and 25 kJ m(-2), and was found to correlate closely to the draw ratio during manufacture and therefore the degree of molecular orientation. However the individual values of G(c) displayed a further level of complexity.</p><p>The expected anisotropic character of the fracture energy was found to change systematically as a function of position across the original width of manufactured film. This feature compared well with the underlying, crystalline orientation distribution and provided strong evidence that under the mode III deformation of the tear test, the fracture mechanism involves the amorphous-crystallite surface boundary.</p><p>Further support for this mechanism was provided by a simple model which, based on this assumption was shown to predict reliably, the anisotropic character of the film. (C) 2004 Kluwer Academic Publishers.</p>

Topics
  • microstructure
  • surface
  • amorphous
  • x-ray diffraction
  • anisotropic