Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alcazar, G. A. Pérez

  • Google
  • 1
  • 2
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2003Magnetic and Structural Properties of Fe-Mn-Al Alloys Produced by Mechanical Alloying4citations

Places of action

Chart of shared publication
Cruz, B.
1 / 1 shared
González Cuervo, Claudia Paulina
1 / 16 shared
Chart of publication period
2003

Co-Authors (by relevance)

  • Cruz, B.
  • González Cuervo, Claudia Paulina
OrganizationsLocationPeople

article

Magnetic and Structural Properties of Fe-Mn-Al Alloys Produced by Mechanical Alloying

  • Cruz, B.
  • Alcazar, G. A. Pérez
  • González Cuervo, Claudia Paulina
Abstract

<p>The effects of concentration and preparation conditions on the magnetic and structural properties of samples of the Fe-Mn-Al system prepared by mechanical alloying were studied by Mössbauer spectroscopy, X-ray diffraction and susceptibility techniques. X-ray diffraction showed that samples with high Al content (40 at.%) and prepared with low milling times (lest than 12 hours) present the peaks of Mn, Fe-Al alloy and broad peaks which correspond to the ternary bcc alloy. For 12 hours the Mn peak disappears and for 24 h or more the bcc ternary phase is totally formed. For t ≥, 24 h Mössbauer spectroscopy studies proved that: samples rich in Fe are ferromagnetic (F) at room temperature (RT) and present a reentrant spin-glass (RSG) behavior for low T; samples with intermediate Fe values are paramagnetic (P) at RT and SG for low T; and those with low Fe content are P at RT, antiferromagnetic (AF) at low T and RSG at very low T. By ac magnetic susceptibility it was possible to detect an additional magnetic phase in the F and P regions which was attributed to a superparamagnetic (SP)-like behavior. XRD and Mössbauer spectroscopy of samples with low Al content (7.5 at.%) showed that they present a fcc AF phase and a Fe-Al F phase for low milling times (≤10 h). For bigger times the only detected phase is the fcc, which is AF for low Fe contents and P for high Fe contents. The effect of using small balls is to enhance the alloyed process.</p>

Topics
  • impedance spectroscopy
  • phase
  • x-ray diffraction
  • grinding
  • glass
  • glass
  • milling
  • susceptibility
  • Mössbauer spectroscopy