People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barnett, Stephanie Jayne
University of Portsmouth
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Life cycle assessment of steel fibre-reinforced concrete beamscitations
- 2019Behaviour of hybrid steel fibre reinforced self compacting concrete using innovative hooked-end steel fibres under tensile stresscitations
- 2017Effects of steel fibre-aggregate interaction on mechanical behaviour of steel fibre reinforced concretecitations
- 2016Investigating geometrical size effect on the flexural strength of the ultra high performance fibre reinforced concrete using the cohesive crack modelcitations
- 2016Distribution and orientation of steel fibres in steel fibre reinforced concrete
- 2016Factors influencing the compressive strength of fly ash based geopolymerscitations
- 2014Modelling behaviour of ultra high performance fibre reinforced concretecitations
- 2014Numerical simulation of ultra high performance fibre reinforced concrete panels subjected to blast loadingcitations
- 2013Maturity testing of lightweight self-compacting and vibrated concretescitations
- 2011Study of fibre orientation and distribution in UHPFRC by electrical resistivity and mechanical tests
- 2010Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strengthcitations
- 2008The effect of temperature on the rate of strength development of slag cement
- 2007Fast-track construction with slag cement concrete: adiabatic strength development and strength prediction
- 2007UHPFRC - Optimisation of mix proportions
- 2006Strength development of mortars containing ground granulated blast-furnace slag: effect of curing temperature and determination of apparent activation energiescitations
- 2003Extent of immiscibility in the ettringite-thaumasite systemcitations
- 2002Study of thaumasite and ettringite phases formed in sulfate/blast furnace slag slurries using XRD full pattern fittingcitations
- 2001An XRPD profile fitting investigation of the solid solution between ettringite, Ca6Al2(SO4)3(OH)12.26H2O, and carbonate ettringite, Ca6Al2(CO3)3(OH)12.26H2Ocitations
- 2000Solid solutions between ettringite, Ca6Al2(SO4)3(OH)12.26H2O, and thaumasite, Ca3SiSO4CO3(OH)6.12H2Ocitations
Places of action
Organizations | Location | People |
---|
article
Solid solutions between ettringite, Ca6Al2(SO4)3(OH)12.26H2O, and thaumasite, Ca3SiSO4CO3(OH)6.12H2O
Abstract
A series of solid solution phases between ettringite, Ca6Al2(SO4)(3)(OH)(12). 26H(2)O, and thaumasite, Ca3SiSO4CO3(OH)(6). 12H(2)O, have been prepared and analysed by X-ray powder diffraction and full pattern fitting. Solid solutions were shown to exist with both the ettringite structure (space group P31c) and the thaumasite structure (space group P6(3), c-axis halved). A possible discontinuity was identified, characterised by a gap in the a-dimension of the solid solution phases produced. This discontinuity is believed to correspond to a switch between the ettringite space group and the thaumasite space group. It is suggested that any discontinuity in the solid solution is caused by differences in the hydrogen bonding of the two structures. (C) 2000 Kluwer Academic Publishers.