People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Crowley, James D.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
[Re(CO)3]+ complexes of exo-functionalized tridentate "click" macrocycles
Abstract
<p>There is considerable interest in the development of bifunctional ligand scaffolds for the group 7 metals due to potential biological applications. Building on our recent work in the development of "click" ligands and macrocycles, we show that a CuAAC "click" approach can be exploited for the synthesis of a small family of bioconjugated tridentate pyridyl-1,2,3-triazole macrocycles. These bioconjugated tridentate macrocycles form stable [Re(CO)<sub>3</sub>]<sup>+</sup> complexes, and this could facilitate the development of [M(CO)<sub>3</sub>]<sup>+</sup> (M = Mn, Tc, Re) targeted agents. The parent macrocycle, bioconjugates, and [Re(CO)<sub>3</sub>]<sup>+</sup> complexes were characterized by elemental analysis and HR-ESI-MS, <sup>1</sup>H and <sup>13</sup>C NMR, and IR spectroscopy, and the molecular structures of the alcohol-functionalized macrocycle and two of the Re(I) complexes were confirmed by X-ray crystallography. The electronic structure of the parent [Re(CO)<sub>3</sub>]<sup>+</sup> macrocycle complex was examined using UV-vis, Raman, and emission spectroscopy and density functional theory calculations. The complex exhibited intense absorptions in the UV region which were modeled using time-dependent density functional theory (TD-DFT). The calculations suggest that the lower energy part of the absorption band is MLCT in nature and additional higher energy π-π∗ transitions are present. The complex was weakly emissive at room temperature in methanol with a quantum yield of 5.1 × 10<sup>-3</sup> and correspondingly short excited state lifetime (τ ≈ 20 ns). The family of macrocycles and the corresponding Re(I) complexes were tested for antimicrobial activity in vitro against both Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) microorganisms. Agar-based disk diffusion assays indicated that two of the Re(I) complexes displayed antimicrobial activity but the minimum inhibitory concentrations (MIC) for these compounds proved to be extremely modest (MIC > 256 μg/mL).</p>