Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ruffer, T.

  • Google
  • 1
  • 5
  • 62

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Molecular Wires using (Oligo)pyrroles as Connecting Units: An Electron Transfer Study62citations

Places of action

Chart of shared publication
Lang, H.
1 / 22 shared
Low, Paul J.
1 / 12 shared
Pfaff, U.
1 / 1 shared
Hildebrandt, A.
1 / 1 shared
Schaarschmidt, D.
1 / 1 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Lang, H.
  • Low, Paul J.
  • Pfaff, U.
  • Hildebrandt, A.
  • Schaarschmidt, D.
OrganizationsLocationPeople

article

Molecular Wires using (Oligo)pyrroles as Connecting Units: An Electron Transfer Study

  • Lang, H.
  • Low, Paul J.
  • Pfaff, U.
  • Ruffer, T.
  • Hildebrandt, A.
  • Schaarschmidt, D.
Abstract

A series of (oligo)pyrroles featuring redox-active terminal ferrocenyl groups (Fc2-(cC4H2NPh)n (4, n = 1; 9, n = 2; 16, n = 3; 20, n = 4)) has been prepared using a Negishi C,C cross-coupling reaction protocol. The bi-, ter-, and quaterpyrrole wire moieties have been built up by C,C cross-coupling reactions of trimethylsilyl-protected pyrrole units in the presence of [Pd(CH2C(CH3)2P(tC4H9)2)(μ-Cl)]2 as precatalyst. The structural properties of the title compounds were investigated by spectroscopic means and single-crystal X-ray diffraction studies (9, 16, and 20). The influence of the increasing number of N-phenylpyrrole units on the electronic interaction between the iron centers was studied using electrochemistry (cyclic (CV) and square wave voltammetry (SWV)) as well as spectroelectrochemistry (in situ UV/vis/near-IR spectroscopy). With the exception of the diferrocenyl quaterpyrrole 20, the application of [NnBu4][B(C6F5)4] as electrolyte allows the discrete oxidation of the ferrocenyl termini (ΔE°′ = 450 mV (4), ΔE°′ = 320 mV (9), ΔE°′ = 165 mV (16)) in cyclic and square wave voltammograms. However, the iron centers of 20 were oxidized simultaneously, generating dicationic 202+. Additionally, one (9) or two (16 and 20) pyrrole-related well-defined reversible one-electron-redox processes were observed. The cyclic voltammetry data reveal that the splitting of the ferrocene-based redox couples, ΔE°′, decreases with increasing oligopyrrole chain length and, hence, a greater metal–metal distance. The trends in ΔE°′ with oligopyrrole structure also map to the electronic coupling between the ferrocene moieties, as estimated by spectroelectrochemical UV/vis/near-IR measurements. Despite the fact that there is no direct metal–metal interaction in diferrocenyl quaterpyrrole 20, a large absorption in the near-IR region is observed arising from photoinduced charge transfer from the oligopyrrole backbone to the redox-active ferrocenyl termini. These charge transfer absorptions have also been found in the dicationic oxidation state of the mono-(4), bi- (9), and terpyrroles (16). Within this series of diferrocenyl(oligo)pyrroles this CT band is shifted bathochromically with increasing chain length of the backbone motif.

Topics
  • impedance spectroscopy
  • compound
  • x-ray diffraction
  • iron
  • wire
  • cyclic voltammetry
  • infrared spectroscopy
  • square-wave voltammetry