People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Low, Paul J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2021Uncapped gold nanoparticles for the metallization of organic monolayerscitations
- 2017Coordinating Tectons. Experimental and Computational Infrared Data as Tools to Identify Conformational Isomers and Explore Electronic Structures of 4-Ethynyl-2,2′-bipyridine Complexescitations
- 2017All-carbon electrode molecular electronic devices based on Langmuir–Blodgett monolayerscitations
- 2014Preparation of nascent molecular electronic devices from gold nanoparticles and terminal alkyne functionalised monolayer filmscitations
- 2014From an Organometallic Monolayer to an Organic Monolayer Covered by Metal Nanoislands: A Simple Thermal Protocol for the Fabrication of the Top Contact Electrode in Molecular Electronic Devicescitations
- 2013Straightforward Access to Tetrametallic Complexes with a Square Array by Oxidative Dimerization of Organometallic Wirescitations
- 2013Molecular Wires using (Oligo)pyrroles as Connecting Units: An Electron Transfer Studycitations
- 2011Synthesis, spectroscopy and electronic structure of the vinylidene and alkynyl complexes [W(CCHR)(dppe)(η-C7H7)]+ and [W(CCR)(dppe)(η-C7H7)]n+ (n = 0 or 1)citations
- 2010Syntheses and molecular structures of some tricobalt carbonyl clusters containing 2,4,6-trimethyl-1,3,5-trithianecitations
- 2009Organometallic Complexes for Nonlinear Optics. 45. Dispersion of the Third-Order Nonlinear Optical Properties of Triphenylamine-Cored Alkynylruthenium Dendrimerscitations
- 2007Syntheses, structures and redox properties of some complexes containing the Os(dppe)Cp* fragment, including [{Os(dppe)Cp*}2(μ-C=CC=C)]citations
- 2006Polymetallation of alkenes: Formation of some complexes containing branched chain carbon-rich ligandscitations
Places of action
Organizations | Location | People |
---|
article
Molecular Wires using (Oligo)pyrroles as Connecting Units: An Electron Transfer Study
Abstract
A series of (oligo)pyrroles featuring redox-active terminal ferrocenyl groups (Fc2-(cC4H2NPh)n (4, n = 1; 9, n = 2; 16, n = 3; 20, n = 4)) has been prepared using a Negishi C,C cross-coupling reaction protocol. The bi-, ter-, and quaterpyrrole wire moieties have been built up by C,C cross-coupling reactions of trimethylsilyl-protected pyrrole units in the presence of [Pd(CH2C(CH3)2P(tC4H9)2)(μ-Cl)]2 as precatalyst. The structural properties of the title compounds were investigated by spectroscopic means and single-crystal X-ray diffraction studies (9, 16, and 20). The influence of the increasing number of N-phenylpyrrole units on the electronic interaction between the iron centers was studied using electrochemistry (cyclic (CV) and square wave voltammetry (SWV)) as well as spectroelectrochemistry (in situ UV/vis/near-IR spectroscopy). With the exception of the diferrocenyl quaterpyrrole 20, the application of [NnBu4][B(C6F5)4] as electrolyte allows the discrete oxidation of the ferrocenyl termini (ΔE°′ = 450 mV (4), ΔE°′ = 320 mV (9), ΔE°′ = 165 mV (16)) in cyclic and square wave voltammograms. However, the iron centers of 20 were oxidized simultaneously, generating dicationic 202+. Additionally, one (9) or two (16 and 20) pyrrole-related well-defined reversible one-electron-redox processes were observed. The cyclic voltammetry data reveal that the splitting of the ferrocene-based redox couples, ΔE°′, decreases with increasing oligopyrrole chain length and, hence, a greater metal–metal distance. The trends in ΔE°′ with oligopyrrole structure also map to the electronic coupling between the ferrocene moieties, as estimated by spectroelectrochemical UV/vis/near-IR measurements. Despite the fact that there is no direct metal–metal interaction in diferrocenyl quaterpyrrole 20, a large absorption in the near-IR region is observed arising from photoinduced charge transfer from the oligopyrrole backbone to the redox-active ferrocenyl termini. These charge transfer absorptions have also been found in the dicationic oxidation state of the mono-(4), bi- (9), and terpyrroles (16). Within this series of diferrocenyl(oligo)pyrroles this CT band is shifted bathochromically with increasing chain length of the backbone motif.