People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reparaz, Juan Sebastian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Impact of Oligoether Side-Chain Length on the Thermoelectric Properties of a Polar Polythiophenecitations
- 2024On The Thermal Conductivity of Conjugated Polymers for Thermoelectricscitations
- 2023In-plane thermal diffusivity determination using beam-offset frequency-domain thermoreflectance with a one-dimensional optical heat sourcecitations
- 2022Enhanced Photoluminescence of Cesium Lead Halide Perovskites by Quasi‐3D Photonic Crystalscitations
- 2016Thermal conductivity of MoS2 polycrystalline nanomembranes
- 2015Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineeringcitations
- 2013Comparison of Two Types of Vertically Aligned ZnO NRs for Highly Efficient Polymer Solar Cellscitations
Places of action
Organizations | Location | People |
---|
article
Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering
Abstract
This is an open access article published under an ACS AuthorChoice License. See Standard ACS AuthorChoice/Editors' Choice Usage Agreement - https://pubs.acs.org/page/policy/authorchoice_termsofuse.html ; A detailed understanding of the connections of fabrication and processing to structural and thermal properties of low-dimensional nanostructures is essential to design materials and devices for phononics, nanoscale thermal management, and thermoelectric applications. Silicon provides an ideal platform to study the relations between structure and heat transport since its thermal conductivity can be tuned over 2 orders of magnitude by nanostructuring. Combining realistic atomistic modeling and experiments, we unravel the origin of the thermal conductivity reduction in ultrathin suspended silicon membranes, down to a thickness of 4 nm. Heat transport is mostly controlled by surface scattering: rough layers of native oxide at surfaces limit the mean free path of thermal phonons below 100 nm. Removing the oxide layers by chemical processing allows us to tune the thermal conductivity over 1 order of magnitude. Our results guide materials design for future phononic applications, setting the length scale at which nanostructuring affects thermal phonons most effectively.