People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lin, Chun Hao
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Size-tuned ZnO nanocrucible arrays for magnetic nanodot synthesis via atomic layer deposition-assisted block polymer lithography
Abstract
<p>Low-temperature atomic layer deposition of conformal ZnO on a self-assembled block polymer lithographic template comprising well-ordered, vertically aligned cylindrical pores within a poly(styrene) (PS) matrix was used to produce nanocrucible templates with pore diameters tunable via ZnO thickness. Starting from a PS template with a hexagonal array of 30 nm diameter pores on a 45 nm pitch, the ZnO thickness was progressively increased to narrow the pore diameter to as low as 14 nm. Upon removal of the PS by heat treatment in air at 500 °C to form an array of size-tunable ZnO nanocrucibles, permalloy (Ni<sub>80</sub>Fe<sub>20</sub>) was evaporated at normal incidence, filling the pores and creating an overlayer. Argon ion beam milling was then used to etch back the overlayer (a Damascene-type process), leaving a well-ordered array of isolated ZnO nanocrucibles filled with permalloy nanodots. Microscopy and temperature-dependent magnetometry verified the diameter reduction with increasing ZnO thickness. The largest diameter (30 nm) dots exhibit a ferromagnetic multidomain/vortex state at 300 K, with relatively weakly temperature-dependent coercivity. Reducing the diameter leads to a crossover to a single-domain state and eventually superparamagnetism at sufficiently high temperature, in quantitative agreement with expectations. We argue that this approach could render this form of block polymer lithography compatible with high-temperature processing (as required for technologically important high perpendicular anisotropy ordered alloys, for instance), in addition to enabling separation-dependent studies to probe interdot magnetostatic interactions.</p>