People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lauritsen, Jeppe Vang
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023Atomic-Scale Site Characterization of Cu-Zn Exchange on Cu(111)citations
- 2023Steering carbon dioxide reduction toward C–C coupling using copper electrodes modified with porous molecular filmscitations
- 2023The interface of in-situ grown single-layer epitaxial MoS2 on SrTiO3(001) and (111)citations
- 2022Iron carbide formation on thin iron films grown on Cu(1 0 0)citations
- 2022WO3 Monomers Supported on Anatase TiO2(101), −(001), and Rutile TiO2(110)citations
- 2022Can the CO 2 Reduction Reaction Be Improved on Cu:Selectivity and Intrinsic Activity of Functionalized Cu Surfacescitations
- 2022Can the CO2Reduction Reaction Be Improved on Cucitations
- 2021Nanoscale Chevrel-Phase Mo6S8Prepared by a Molecular Precursor Approach for Highly Efficient Electrocatalysis of the Hydrogen Evolution Reaction in Acidic Mediacitations
- 2020Molecular Nanowire Bonding to Epitaxial Single-Layer MoS2 by an On-Surface Ullmann Coupling Reactioncitations
- 2020Cubes on a string:a series of linear coordination polymers with cubane-like nodes and dicarboxylate linkerscitations
- 2019Anisotropic iron-doping patterns in two-dimensional cobalt oxide nanoislands on Au(111)citations
- 2019Structural and electronic properties of Fe dopants in cobalt oxide nanoislands on Au(111)citations
- 2018Phase Transitions of Cobalt Oxide Bilayers on Au(111) and Pt(111)citations
- 2018Topotactic Growth of Edge-Terminated MoS 2 from MoO 2 Nanocrystalscitations
- 2018Topotactic Growth of Edge-Terminated MoS2 from MoO2 Nanocrystalscitations
- 2017Gold-supported two-dimensional cobalt oxyhydroxide (CoOOH) and multilayer cobalt oxide islandscitations
- 2017Edge reactivity and water-assisted dissociation on cobalt oxide nanoislandscitations
- 2015Electronic Structure of Epitaxial Single-Layer MoS2citations
- 2015Noncontact AFM Imaging of Atomic Defects on the Rutile TiO2 (110) Surfacecitations
- 2015Electronic structure of epitaxial single-layer MoS2citations
- 2015Synthesis of Epitaxial Single-Layer MoS2 on Au(111)citations
- 2014Structure and Electronic Properties of In Situ Synthesized Single-Layer MoS2 on a Gold Surfacecitations
- 2014Structure and Electronic Properties of In Situ Synthesized Single-Layer MoS 2 on a Gold Surfacecitations
- 2011Atomic-scale non-contact AFM studies of alumina supported nanoparticles
- 2011Stabilization Principles for Polar Surfaces of ZnOcitations
Places of action
Organizations | Location | People |
---|
article
Structure and Electronic Properties of In Situ Synthesized Single-Layer MoS2 on a Gold Surface
Abstract
When transition metal sulfides such as MoS2 are present in the single-layer form, the electronic properties change in fundamental ways, enabling them to be used, e.g., in two-dimensional semiconductor electronics, optoelectronics, and light harvesting. The change is related to a subtle modification of the band structure due to confinement in the direction perpendicular to the sheets, and there is a considerable interest in understanding how this modification can be controlled and adjusted to generate 2D-materials with functional properties. In this article we report a synthesis procedure together with scanning tunneling microscopy and X-ray photoelectron spectroscopy characterization of two-dimensional single-layer islands of MoS2 synthesized directly on a gold single crystal substrate. Thanks to a periodic modulation of the atom stacking induced by the lattice mismatch, we observe a structural buckling of the MoS2 layer resulting in a characteristic moiré pattern. X-ray photoelectron spectroscopy indicates that the system develops the characteristics of n-doped MoS2 due to electron donation. Scanning tunneling spectroscopy furthermore reflects a convolution of MoS2 and Au donor states where the MoS2 band structure appears modified at the band gap edges. This electronic effect is further modulated by the moiré periodicity and leads to small substrate-induced electronic perturbations near the conduction band minimum in the band gap of MoS2. The results may be highly relevant in the context of nanopatterned two-dimensional materials on metal surfaces, and we propose the MoS2/Au system in this article as a promising candidate to further explore the properties of supported 2D transition-metal dichalcogenides.