Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kagan, Cherie R.

  • Google
  • 5
  • 41
  • 1369

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Photophysics of Two-Dimensional Semiconducting Organic–Inorganic Metal-Halide Perovskites32citations
  • 2020Basic Research Needs for Transformative Manufacturingcitations
  • 2015Prospects of Nanoscience with Nanocrystals1122citations
  • 2014Solution-Processed Phase-Change VO2 Metamaterials from Colloidal Vanadium Oxide (VOx) Nanocrystals124citations
  • 2013Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals91citations

Places of action

Chart of shared publication
Sholl, David S.
1 / 5 shared
Lee, Ho Nyung
1 / 10 shared
Nealey, Paul
1 / 2 shared
Rollett, Anthony
1 / 7 shared
Helms, Brett A.
1 / 1 shared
Holladay, John E.
1 / 1 shared
Sutherland, John
1 / 1 shared
Lewis, Jennifer
1 / 1 shared
Greer, Julie
1 / 1 shared
Spadaccini, Chris M.
1 / 1 shared
Holm, Elizabeth
1 / 1 shared
Jenks, Cynthia
1 / 1 shared
Braun, Paul
1 / 3 shared
Gao, Yan
1 / 2 shared
Tway, Cathy
1 / 1 shared
Parak, Wolfgang J.
1 / 5 shared
Guyot-Sionnnest, Philippe
1 / 1 shared
Heiss, Wolfgang
1 / 221 shared
Hens, Zeger
1 / 29 shared
Rogach, Andrey L.
1 / 9 shared
Konstantatos, Gerasimos
1 / 7 shared
Reiss, Peter
1 / 20 shared
Murray, Christopher B.
3 / 7 shared
Klimov, Victor I.
1 / 1 shared
Hyeon, Taeghwan
1 / 7 shared
Manna, Liberato
1 / 61 shared
Korgel, Brian A.
1 / 8 shared
Milliron, Delia J.
1 / 3 shared
Kovalenko, Maksym V.
1 / 195 shared
Cabot, Andreu
1 / 43 shared
Talapin, Dmitri V.
1 / 14 shared
Paik, Taejong
2 / 3 shared
Engheta, Nader
2 / 5 shared
Caglayan, Humeyra
2 / 19 shared
Hong, Sung-Hoon
1 / 1 shared
Gaulding, E. Ashley
1 / 2 shared
Gordon, Thomas R.
1 / 2 shared
Hong, Sung Hoon
1 / 1 shared
Diroll, Benjamin T.
1 / 1 shared
Fafarman, Aaron T.
1 / 3 shared
Ye, Xingchen
1 / 1 shared
Chart of publication period
2022
2020
2015
2014
2013

Co-Authors (by relevance)

  • Sholl, David S.
  • Lee, Ho Nyung
  • Nealey, Paul
  • Rollett, Anthony
  • Helms, Brett A.
  • Holladay, John E.
  • Sutherland, John
  • Lewis, Jennifer
  • Greer, Julie
  • Spadaccini, Chris M.
  • Holm, Elizabeth
  • Jenks, Cynthia
  • Braun, Paul
  • Gao, Yan
  • Tway, Cathy
  • Parak, Wolfgang J.
  • Guyot-Sionnnest, Philippe
  • Heiss, Wolfgang
  • Hens, Zeger
  • Rogach, Andrey L.
  • Konstantatos, Gerasimos
  • Reiss, Peter
  • Murray, Christopher B.
  • Klimov, Victor I.
  • Hyeon, Taeghwan
  • Manna, Liberato
  • Korgel, Brian A.
  • Milliron, Delia J.
  • Kovalenko, Maksym V.
  • Cabot, Andreu
  • Talapin, Dmitri V.
  • Paik, Taejong
  • Engheta, Nader
  • Caglayan, Humeyra
  • Hong, Sung-Hoon
  • Gaulding, E. Ashley
  • Gordon, Thomas R.
  • Hong, Sung Hoon
  • Diroll, Benjamin T.
  • Fafarman, Aaron T.
  • Ye, Xingchen
OrganizationsLocationPeople

article

Solution-Processed Phase-Change VO2 Metamaterials from Colloidal Vanadium Oxide (VOx) Nanocrystals

  • Paik, Taejong
  • Murray, Christopher B.
  • Kagan, Cherie R.
  • Engheta, Nader
  • Caglayan, Humeyra
  • Hong, Sung-Hoon
  • Gaulding, E. Ashley
  • Gordon, Thomas R.
Abstract

<p>We demonstrate thermally switchable VO2 metamaterials fabricated using solution-processable colloidal nanocrystals (NCs). Vanadium oxide (VOx) NCs are synthesized through a nonhydrolytic reaction and deposited from stable colloidal dispersions to form NC thin films. Rapid thermal annealing transforms the VOx NC thin films into monoclinic, nanocrystalline VO2 thin films that show a sharp, reversible metal insulator phase transition. Introduction of precise concentrations of tungsten dopings into the colloidal VOx NCs enables the still sharp phase transition of the VO2 thin films to be tuned to lower temperatures as the doping level increases. We fabricate "smart", differentially doped, multilayered VO2 films to program the phase and therefore the metal insulator behavior of constituent vertically structured layers with temperature. With increasing temperature, we tailored the optical response of multilayered films in the near-IR and IR regions from that of a strong light absorber, in a metal insulator structure, to that of a Drude-like reflector, characteristic of a pure metallic structure. We demonstrate that nanocrystal-based nanoimprinting can be employed to pattern multilayered subwavelength nanostructures, such as three-dimensional VO2 nanopillar arrays, that exhibit plasmonic dipolar responses tunable with a temperature change.</p>

Topics
  • dispersion
  • phase
  • thin film
  • phase transition
  • annealing
  • tungsten
  • metamaterial
  • vanadium