People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Novoselov, Kostya S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Resonant band hybridization in alloyed transition metal dichalcogenide heterobilayerscitations
- 2024Wandering principal optical axes in van der Waals triclinic materialscitations
- 2024Resonant Band Hybridization in Alloyed Transition Metal Dichalcogenide Heterobilayers.
- 2024DNA‐rGO Aerogel Bioanodes with Microcompartmentalization for High‐Performance Bioelectrochemical Systemscitations
- 20233D Printed Carbon Framework with the Graphene Aerogel for Microbial Fuel Cell Application
- 2021Sustainable and multifunctional composites of graphene‐based natural jute fiberscitations
- 2020Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applicationscitations
- 2020Emergence of Highly Linearly Polarized Interlayer Exciton Emission in MoSe2/WSe2 Heterobilayers with Transfer-Induced Layer Corrugationcitations
- 2020Emergence of Highly Linearly Polarized Interlayer Exciton Emission in MoSe 2 /WSe 2 Heterobilayers with Transfer-Induced Layer Corrugationcitations
- 2020Highly Conductive, Scalable and Machine Washable Graphene-Based E-Textiles for Multifunctional Wearable Electronic Applicationscitations
- 2019Ultrahigh performance of nanoengineered graphene-based natural jute fiber compositescitations
- 2019Ultra-high performance of nano-engineered graphene-based natural jute fiber compositescitations
- 2018High Performance Graphene-Based Natural Fibre Compositescitations
- 2018Infrared-to-violet tunable optical activity in atomic films of GaSe, InSe, and their heterostructurescitations
- 2018High-performance graphene-based natural fiber compositescitations
- 2018Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayerscitations
- 2018Growth of graphene on tantalum and its protective propertiescitations
- 2017Observing imperfection in atomic interfaces for van der Waals heterostructurescitations
- 2016High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSecitations
- 2015Deformation of Wrinkled Graphenecitations
- 2013Reversible loss of bernal stacking during the deformation of few-layer graphene in nanocompositescitations
- 2012Optimizing the reinforcement of polymer-based nanocomposites by graphenecitations
- 2011Strain mapping in a graphene monolayer nanocompositecitations
- 2011Development of a universal stress sensor for graphene and carbon fibrescitations
- 2010Interfacial stress transfer in a graphene monolayer nanocompositecitations
- 2007Breakdown of the adiabatic Born-Oppenheimer approximation in graphenecitations
Places of action
Organizations | Location | People |
---|
article
Reversible loss of bernal stacking during the deformation of few-layer graphene in nanocomposites
Abstract
The deformation of nanocomposites containing graphene flakes with different numbers of layers has been investigated with the use of Raman spectroscopy. It has been found that there is a shift of the 2D band to lower wavenumber and that the rate of band shift per unit strain tends to decrease as the number of graphene layers increases. It has been demonstrated that band broadening takes place during tensile deformation for mono- and bilayer graphene but that band narrowing occurs when the number of graphene layers is more than two. It is also found that the characteristic asymmetric shape of the 2D Raman band for the graphene with three or more layers changes to a symmetrical shape above about 0.4% strain and that it reverts to an asymmetric shape on unloading. This change in Raman band shape and width has been interpreted as being due to a reversible loss of Bernal stacking in the few-layer graphene during deformation. It has been shown that the elastic strain energy released from the unloading of the inner graphene layers in the few-layer material (∼0.2 meV/atom) is similar to the accepted value of the stacking fault energies of graphite and few layer graphene. It is further shown that this loss of Bernal stacking can be accommodated by the formation of arrays of partial dislocations and stacking faults on the basal plane. The effect of the reversible loss of Bernal stacking upon the electronic structure of few-layer graphene and the possibility of using it to modify the electronic structure of few-layer graphene are discussed. © 2013 American Chemical Society.