People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sauer, Markus
TU Wien
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024New insights into the photoassisted anodic reactions of n-type 4H SiC semiconductors
- 2022[Ru(tmphen)<sub>3</sub>]<sub>2</sub>[Fe(CN)<sub>6</sub>] and [Ru(phen)<sub>3</sub>][Fe(CN)<sub>5</sub>(NO)] complexes and formation of a heterostructured RuO<sub>2</sub>–Fe<sub>2</sub>O<sub>3</sub> nanocomposite as an efficient alkaline HER and OER electrocatalystcitations
- 2022[Ru(tmphen)(3)](2)[Fe(CN)(6)] and [Ru(phen)(3)][Fe(CN)(5)(NO)] complexes and formation of a heterostructured RuO2-Fe2O3 nanocomposite as an efficient alkaline HER and OER electrocatalystcitations
- 2019Silicon/Mesoporous Carbon (Si/MC) Derived from Phenolic Resin for High Energy Anode Materials for Li-ion Batteries: Role of HF Etching and Vinylene Carbonate (VC) Additivecitations
- 2016Disentangling Vacancy Oxidation on Metallicity-Sorted Carbon Nanotubescitations
- 2013Hybrid Carbon Nanotube Networks as Efficient Hole Extraction Layers for Organic Photovoltaicscitations
- 2007Fluorescence of single molecules in polymer films: Sensitivity of blinking to local environmentcitations
- 2004Multichromophoric dendrimers as single-photon sources:A single-molecule studycitations
Places of action
Organizations | Location | People |
---|
article
Hybrid Carbon Nanotube Networks as Efficient Hole Extraction Layers for Organic Photovoltaics
Abstract
Transparent, highly percolated networks of regioregular poly(3-hexylthiophene) (rr-P3HT)-wrapped semiconducting single-walled carbon nanotubes (s-SWNTs) are deposited, and the charge transfer processes of these nanohybrids are studied using spectroscopic and electrical measurements. The data disclose hole doping of s-SWNTs by the polymer, challenging the prevalent electron-doping hypothesis. Through controlled fabrication, high- to low-density nanohybrid networks are achieved, with low-density hybrid carbon nanotube networks tested as hole transport layers (HTLs) for bulk heterojunction (BHJ) organic photovoltaics (OPV). OPVs incorporating these rr-P3HT/s-SWNT networks as the HTL demonstrate the best large area (70 mm2) carbon nanotube incorporated organic solar cells to date with a power conversion efficiency of 7.6%. This signifies the strong capability of nanohybrids as an efficient hole extraction layer, and we believe that dense nanohybrid networks have the potential to replace expensive and material scarce inorganic transparent electrodes in large area electronics toward the realization of low-cost flexible electronics.