People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Behr, Michael J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Orientation and morphological evolution of catalyst nanoparticles during carbon nanotube growth
Abstract
<p>We examined the structure, morphology, and orientation of catalyst nanoparticles used for seeding and growing multiwall carbon nanotubes (MWCNTs) by plasma enhanced chemical vapor deposition in CH<sub>4</sub>/H<sub>2</sub> gas mixtures. Iron catalyst nanocrystals are converted to Fe<sub>3</sub>C in CH<sub>4</sub>/H<sub>2</sub> plasmas and the MWCNTs grow from Fe<sub>3</sub>C nanocrystals. Initially faceted and equiaxed catalyst nanocrystals are distorted and elongated significantly once a tubular CNT structure is formed around the catalyst particles. Eventually, catalysts deform into elongated tear-drop shapes. Once this morphology forms, CNT structures produced are straight and have uniform diameters. Surprisingly, the Fe<sub>3</sub>C nanocrystals located inside the base of well-graphitized nanotubes do not exhibit a preferred orientation relative to the nanotube axis. Catalyst nanocrystals in a variety of orientations relative to the nanotube axis still produce well-graphitized nanotubes with similar diameters and structures.</p>