People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thelander, Kimberly Dick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2015Electrical and Surface Properties of InAs/InSb Nanowires Cleaned by Atomic Hydrogencitations
- 2012High crystal quality wurtzite-zinc blende heterostructures in metal-organic vapor phase epitaxy-grown GaAs nanowirescitations
- 2011Crystal structure control in Au-free self-seeded InSb wire growth.citations
- 2008Control of GaP and GaAs Nanowire Morphology through Particle and Substrate Chemical Modification.citations
- 2007Directed growth of branched nanowire structures
- 2007Targeted deposition of Au aerosol nanoparticles on vertical nanowires for the creation of nanotreescitations
- 2006Crystal structure of branched epitaxial III-V nanotreescitations
- 2005A new understanding of au-assisted growth of III-V semiconductor nanowirescitations
- 2005Role of the Au/III-V interaction in the Au-assisted growth of III-V branched nanostructurescitations
- 2004Growth of GaP nanotree structures by sequential seeding of 1D nanowirescitations
Places of action
Organizations | Location | People |
---|
article
Control of GaP and GaAs Nanowire Morphology through Particle and Substrate Chemical Modification.
Abstract
We demonstrate two very different morphologies for GaP and GaAs nanowires grown by Au-assisted MOVPE on Si(111) substrates: rodlike wires and tapered wires with sharp tips. We show that the morphology is related to the stability of the particles at the wire tips during growth, and we propose that the mechanism of this effect is diffusion of Au away from the tip. Diffusion occurs, leading to tapered wires, only if there is a clean Si surface to act as a reservoir for the Au. Furthermore, the presence of indium in the particles, even at background levels from previous growth runs, inhibits the migration of Au. These results demonstrate a dramatic example of the sensitivity of wire morphology to substrate and particle chemistry, which could provide an important tool to tune nanowire morphology through particle alloying or surface treatment.