People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hansen, Thomas Willum
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (55/55 displayed)
- 2024Interpretability of high-resolution transmission electron microscopy imagescitations
- 2024Interpretability of high-resolution transmission electron microscopy imagescitations
- 2024Oxygen-defective electrostrictors for soft electromechanicscitations
- 2024Oxygen-defective electrostrictors for soft electromechanicscitations
- 2024Beam induced heating in electron microscopy modeled with machine learning interatomic potentialscitations
- 2024Tracing the graphitization of polymers:A novel approach for direct atomic-scale visualizationcitations
- 2023Quantifying noise limitations of neural network segmentations in high-resolution transmission electron microscopycitations
- 2023Reconstructing the exit wave of 2D materials in high-resolution transmission electron microscopy using machine learningcitations
- 2022Machine-Learning Assisted Exit-wave Reconstruction for Quantitative Feature Extraction
- 2022Stereolithography-Derived Three-Dimensional Pyrolytic Carbon/Mn3O4 Nanostructures for Free-Standing Hybrid Supercapacitor Electrodescitations
- 2022Stereolithography-Derived Three-Dimensional Pyrolytic Carbon/Mn 3 O 4 Nanostructures for Free-Standing Hybrid Supercapacitor Electrodescitations
- 2021Reconstructing the exit wave in high-resolution transmission electron microscopy using machine learningcitations
- 2021Electron beam effects in high-resolution transmission electron microscopy investigations of catalytic nanoparticles
- 2020In Situ Study of the Motion of Supported Gold Nanoparticles
- 2020Reduction and carburization of iron oxides for Fischer–Tropsch synthesiscitations
- 2018Carbon support effects on the selectivity of Pd/C catalysts for the hydrogenation of multifunctional chemicals
- 2017Accuracy of surface strain measurements from transmission electron microscopy images of nanoparticlescitations
- 2017Induced Mesocrystal-Formation, Hydrothermal Growth and Magnetic Properties of α-Fe2O3 Nanoparticles in Salt-Rich Aqueous Solutionscitations
- 2016Development of the Atomic-Resolution Environmental Transmission Electron Microscopecitations
- 2015Environmental TEM study of the dynamic nanoscaled morphology of NiO/YSZ during reductioncitations
- 2015Intermetallic GaPd2 Nanoparticles on SiO2 for Low-Pressure CO2 Hydrogenation to Methanolcitations
- 2015Intermetallic GaPd 2 Nanoparticles on SiO 2 for Low-Pressure CO 2 Hydrogenation to Methanol:Catalytic Performance and In Situ Characterizationcitations
- 2014Insights into chirality distributions of single-walled carbon nanotubes grown on different CoxMg1-xO solid solutionscitations
- 2014NiO/YSZ Reduction for SOFC/SOEC Studied In Situ by Environmental Transmission Electron Microscopycitations
- 2014Insights into chirality distributions of single-walled carbon nanotubes grown on different Co x Mg1- x O solid solutionscitations
- 2014Pattern recognition approach to quantify the atomic structure of graphenecitations
- 2014Structure Identification in High-Resolution Transmission Electron Microscopic Imagescitations
- 2014In Situ Study of Noncatalytic Metal Oxide Nanowire Growthcitations
- 2013Automated Structure Detection in HRTEM Images: An Example with Graphene
- 2013Focused electron beam induced processing and the effect of substrate thickness revisitedcitations
- 2013Focused electron beam induced processing and the effect of substrate thickness revisitedcitations
- 2013In situ Transmission Electron Microscopy of catalyst sinteringcitations
- 2013Optical coupling in the ETEM
- 2013Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?citations
- 2013Dynamics of Catalyst Nanoparticles
- 2013The role of electron-stimulated desorption in focused electron beam induced depositioncitations
- 2013The role of electron-stimulated desorption in focused electron beam induced depositioncitations
- 2012Dynamic study of carbon nanotube growth and catalyst morphology evolution during acetylene decomposition on Co/SBA-15 in an environmental TEM
- 2012Dynamic study of carbon nanotube growth and catalyst morphology evolution during acetylene decomposition on Co/SBA-15 in an environmental TEM
- 2012Mechanical properties of low-density polyethylene filled by graphite nanoplateletscitations
- 2012Mechanical properties of low-density polyethylene filled by graphite nanoplateletscitations
- 2012Acetic Acid Formation by Selective Aerobic Oxidation of Aqueous Ethanol over Heterogeneous Ruthenium Catalystscitations
- 2011Nanometer-scale lithography on microscopically clean graphenecitations
- 2011Nanometer-scale lithography on microscopically clean graphenecitations
- 2011Ultrahigh resolution focused electron beam induced processing: the effect of substrate thicknesscitations
- 2011In-situ reduction of promoted cobalt oxide supported on alumina by environmental transmission electron microscopycitations
- 2011Dynamic studies of catalysts for biofuel synthesis in an Environmental Transmission Electron Microscope
- 2010In situ redox cycle of a nickel–YSZ fuel cell anode in an environmental transmission electron microscopecitations
- 2010In situ redox cycle of a nickel–YSZ fuel cell anode in an environmental transmission electron microscopecitations
- 2010Using environmental transmission electron microscope to study the in-situ reduction of Co3O4 supported on α-Al2O3
- 2010Dynamics of Supported Metal Nanoparticles Observed in a CS Corrected Environmental Transmission Electron Microscope
- 2010Dynamical Response of Catalytic Systems in a CS Corrected Environmental Transmission Electron Microscope
- 2009The Titan Environmental Transmission Electron Microscopecitations
- 2007Structural and Morphological Characterization of Cerium Oxide Nanocrystals Prepared by Hydrothermal Synthesiscitations
- 2006Sintering and Particle Dynamics in Supported Metal Catalysts
Places of action
Organizations | Location | People |
---|
article
In Situ Study of Noncatalytic Metal Oxide Nanowire Growth
Abstract
The majority of the nanowire synthesis methods utilize catalyst particles to guide the nanowire geometry. In contrast, catalyst-free methods are attractive for facile fabrication of pure nanowires without the need for catalyst preparation. Nonetheless, how nanowire growth is guided without a catalyst is still widely disputed and unclear. Here, we show that the nanowire growth during metal oxidation is limited by a nucleation of a new layer. On the basis of in situ transmission electron microscope investigations we found that the growth occurs layer by layer at the lowest specific surface energy planes. Atomic layers nucleate at the edge of twin boundary ridges and form a long-range ordering along the twin boundary. We anticipate our study to be a starting point to employ defects for nanowire growth control and consequently shaping the geometry of nanowires in a similar manner as in the catalyst-assisted growth method.