Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dionne, Jennifer A.

  • Google
  • 7
  • 55
  • 1752

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Highly confined epsilon-near-zero- and surface-phonon polaritons in SrTiO3 membranescitations
  • 2022Lattice-Resolution, Dynamic Imaging of Hydrogen Absorption into Bimetallic AgPd Nanoparticles.15citations
  • 2021Dynamic lattice distortions driven by surface trapping in semiconductor nanocrystals.36citations
  • 2016Reconstructing solute-induced phase transformations within individual nanocrystals82citations
  • 2015Probing Complex Reflection Coefficients in One-Dimensional Surface Plasmon Polariton Waveguides and Cavities Using STEM EELS.35citations
  • 2013Observation of Quantum Tunneling between Two Plasmonic Nanoparticles520citations
  • 2012Quantum plasmon resonances of individual metallic nanoparticles1064citations

Places of action

Chart of shared publication
Crust, Kevin J.
1 / 2 shared
Lee, Yonghun
1 / 3 shared
Rischau, Carl Willem
1 / 6 shared
Bercher, Adrien
1 / 2 shared
Kuzmenko, Alexey
1 / 2 shared
Zhou, Yixi
1 / 2 shared
Li, Jiarui
1 / 1 shared
Corder, Stephanie N. Gilbert
1 / 1 shared
Crassee, Iris
1 / 2 shared
Liu, Yin
1 / 2 shared
Korosec, Lukas
1 / 3 shared
Hwang, Harold Y.
1 / 16 shared
Bechtel, Hans A.
1 / 2 shared
Teyssier, Jérémie
1 / 2 shared
Xu, Ruijuan
1 / 5 shared
Angell, Daniel K.
1 / 1 shared
Bourgeois, Briley
1 / 1 shared
Vadai, Michal
1 / 1 shared
Narayan, Tarun C.
1 / 1 shared
Sinclair, Robert
1 / 11 shared
Baldi, Andrea
1 / 11 shared
Koh, Ai Leen
3 / 5 shared
García-Etxarri, Aitzol
1 / 1 shared
Atre, Ashwin C.
1 / 1 shared
Brongersma, Mark L.
1 / 10 shared
Schoen, David T.
1 / 1 shared
Scholl, Jonathan A.
2 / 2 shared
Garcia-Etxarri, Aitzol
1 / 1 shared
Chart of publication period
2024
2022
2021
2016
2015
2013
2012

Co-Authors (by relevance)

  • Crust, Kevin J.
  • Lee, Yonghun
  • Rischau, Carl Willem
  • Bercher, Adrien
  • Kuzmenko, Alexey
  • Zhou, Yixi
  • Li, Jiarui
  • Corder, Stephanie N. Gilbert
  • Crassee, Iris
  • Liu, Yin
  • Korosec, Lukas
  • Hwang, Harold Y.
  • Bechtel, Hans A.
  • Teyssier, Jérémie
  • Xu, Ruijuan
  • Angell, Daniel K.
  • Bourgeois, Briley
  • Vadai, Michal
  • Narayan, Tarun C.
  • Sinclair, Robert
  • Baldi, Andrea
  • Koh, Ai Leen
  • García-Etxarri, Aitzol
  • Atre, Ashwin C.
  • Brongersma, Mark L.
  • Schoen, David T.
  • Scholl, Jonathan A.
  • Garcia-Etxarri, Aitzol
OrganizationsLocationPeople

article

Observation of Quantum Tunneling between Two Plasmonic Nanoparticles

  • Scholl, Jonathan A.
  • Garcia-Etxarri, Aitzol
  • Koh, Ai Leen
  • Dionne, Jennifer A.
Abstract

The plasmon resonances of two closely spaced metallic particles have enabled applications including single-molecule sensing and spectroscopy, novel nanoantennas, molecular rulers, and nonlinear optical devices. In a classical electrodynamic context, the strength of such dimer plasmon resonances increases monotonically as the particle gap size decreases. In contrast, a quantum mechanical framework predicts that electron tunneling will strongly diminish the dimer plasmon strength for subnanometer-scale separations. Here, we directly observe the plasmon resonances of coupled metallic nanoparticles as their gap size is reduced to atomic dimensions. Using the electron beam of a scanning transmission electron microscope (STEM), we manipulate pairs of ~10-nm-diameter spherical silver nanoparticles on a substrate, controlling their convergence and eventual coalescence into a single nanosphere. We simultaneously employ electron energy-loss spectroscopy (EELS) to observe the dynamic plasmonic properties of these dimers before and after particle contact. As separations are reduced from 7 nm, the dominant dipolar peak exhibits a redshift consistent with classical calculations. However, gaps smaller than ~0.5 nm cause this mode to exhibit a reduced intensity consistent with quantum theories that incorporate electron tunneling. As the particles overlap, the bonding dipolar mode disappears and is replaced by a dipolar charge transfer mode. Our dynamic imaging, manipulation, and spectroscopy of nanostructures enables the first full spectral mapping of dimer plasmon evolution and may provide new avenues for in situ nanoassembly and analysis in the quantum regime.

Topics
  • nanoparticle
  • impedance spectroscopy
  • silver
  • strength
  • electron energy loss spectroscopy