Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hong, Sung Hoon

  • Google
  • 1
  • 8
  • 91

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals91citations

Places of action

Chart of shared publication
Paik, Taejong
1 / 3 shared
Diroll, Benjamin T.
1 / 1 shared
Fafarman, Aaron T.
1 / 3 shared
Ye, Xingchen
1 / 1 shared
Murray, Christopher B.
1 / 7 shared
Kagan, Cherie R.
1 / 5 shared
Engheta, Nader
1 / 5 shared
Caglayan, Humeyra
1 / 19 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Paik, Taejong
  • Diroll, Benjamin T.
  • Fafarman, Aaron T.
  • Ye, Xingchen
  • Murray, Christopher B.
  • Kagan, Cherie R.
  • Engheta, Nader
  • Caglayan, Humeyra
OrganizationsLocationPeople

article

Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals

  • Hong, Sung Hoon
  • Paik, Taejong
  • Diroll, Benjamin T.
  • Fafarman, Aaron T.
  • Ye, Xingchen
  • Murray, Christopher B.
  • Kagan, Cherie R.
  • Engheta, Nader
  • Caglayan, Humeyra
Abstract

<p>We demonstrate optical metamaterial design using colloidal gold nanocrystal building blocks. In the solid state, chemically exchanging the nanocrystals' surface-capping molecules provides a tailorable dielectric-to-metal transition exhibiting a 10<sup>10</sup> range in DC conductivity and dielectric permittivity ranging from everywhere positive to everywhere negative throughout the visible-to-near-IR. Direct, wide-area nanoimprinting of subwavelength superstructures at room temperature, on plastic and glass substrates, affords plasmonic resonances ranging from 660 to 1070 nm, in agreement with numerical simulations.</p>

Topics
  • surface
  • polymer
  • simulation
  • glass
  • glass
  • gold
  • metamaterial