People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brintlinger, Todd
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2020Stabilization of reduced copper on ceria aerogels for CO oxidationcitations
- 2020Power of Aerogel Platforms to Explore Mesoscale Transport in Catalysis.citations
- 2018(Invited) Nanoscale Design and Modification of Plasmonic Aerogels for Photocatalytic Hydrogen Generation
- 2017Oxidation-stable plasmonic copper nanoparticles in photocatalytic TiO2 nanoarchitecturescitations
- 2017Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysiscitations
- 2017Effects of Nanoscale Interfacial Design on Photocatalytic Hydrogen Generation Activity at Plasmonic Au–TiO<sub>2</sub> and Au–TiO<sub>2</sub>/Pt Aerogels
- 2017Oxidation−Stable Plasmonic Copper Nanoparticles in Photocatalytic TiO<sub>2</sub> Nanoarchitectures
- 2013Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels.citations
- 2013Electron Tomography of Gold Nanoparticles in Titania Composite Aerogels: Probing Structure to Understand Photochemistry
- 2008Electron thermal microscopycitations
Places of action
Organizations | Location | People |
---|
article
Electron thermal microscopy
Abstract
We present real-time, nanoscale temperature mapping using a transmission electron microscope and standard phase transitions in metal islands. Islands are deposited on the reverse side of commercially available silicon nitride membranes, while local thermal gradients are produced by Joule heating in a thin wire on the front side of the membrane. Change in contrast due to the liquid-solid transition in the islands allows the mapping of absolute temperature, as above or below the transition temperature, over the entire field-of-view. Experiments demonstrate nanoscale (<100 nm) resolution and video-rate (>30 thermal-images per second) speed, supported by combined electrical and thermal modeling. This provides a generic and adaptable platform for nanoscale thermal characterization independent of strong probe coupling and optical effects.