Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shimizu, Ken T.

  • Google
  • 1
  • 4
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2006Probing molecular junctions using surface plasmon resonance spectroscopy23citations

Places of action

Chart of shared publication
Fabbri, Jason D.
1 / 1 shared
Melosh, Nicholas A.
1 / 2 shared
Pala, Ragip A.
1 / 1 shared
Brongersma, Mark L.
1 / 10 shared
Chart of publication period
2006

Co-Authors (by relevance)

  • Fabbri, Jason D.
  • Melosh, Nicholas A.
  • Pala, Ragip A.
  • Brongersma, Mark L.
OrganizationsLocationPeople

article

Probing molecular junctions using surface plasmon resonance spectroscopy

  • Fabbri, Jason D.
  • Melosh, Nicholas A.
  • Pala, Ragip A.
  • Shimizu, Ken T.
  • Brongersma, Mark L.
Abstract

The optical absorption spectra of nanometer-thick organic films and molecular monolayers sandwiched between two metal contacts have been measured successfully using surface plasmon resonance spectroscopy (SPRS). The electric field within metal-insulator (organic)-metal (MIM) cross-bar junctions created by surface plasmon-polaritons excited on the metal surface allows sensitive measurement of molecular optical properties. Specifically, this spectroscopic technique extracts the real and imaginary indices of the organic layer for each wavelength of interest. The SPRS sensitivity was calculated for several device architectures, metals, and layer thicknesses to optimize the organic film absorptivity measurements. Distinct optical absorption features were clearly observed for R6G layers as thin as a single molecular monolayer between two metal electrodes. This method also enables dynamic measurement of molecular conformation inside metallic junctions, as shown by following the optical switching of a thin spiropyran/polymer film upon exposure to UV light. Finally, optical and electrical measurements can be made simultaneously to study the effect of electrical bias and current on molecular conformation, which may have significant impact in areas such as molecular and organic electronics.

Topics
  • surface
  • polymer
  • surface plasmon resonance spectroscopy