Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Brorson, M.

  • Google
  • 3
  • 14
  • 189

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2014Visualizing the Stoichiometry of Industrial-Style Co-Mo-S Catalysts with Single-Atom Sensitivitycitations
  • 2003Soldering of Nanotubes onto Microelectrodes107citations
  • 2003Solid gold nanostructures fabricated by electron beam deposition82citations

Places of action

Chart of shared publication
Kisielowski, Cf
1 / 1 shared
Hansen, Lp
1 / 1 shared
Helveg, S.
1 / 4 shared
Ramasse, Qm
1 / 20 shared
Moses, Pg
1 / 1 shared
Zhu, Y.
1 / 19 shared
Mølhave, Kristian S.
2 / 18 shared
Bøggild, Peter
2 / 46 shared
Jacobsen, C. J. H.
2 / 2 shared
Madsen, Dorte Nørgaard
2 / 2 shared
Rasmussen, A. M.
2 / 2 shared
Mateiu, Ramona Valentina
1 / 7 shared
Appel, C. C.
1 / 1 shared
Carlsson, A.
1 / 2 shared
Chart of publication period
2014
2003

Co-Authors (by relevance)

  • Kisielowski, Cf
  • Hansen, Lp
  • Helveg, S.
  • Ramasse, Qm
  • Moses, Pg
  • Zhu, Y.
  • Mølhave, Kristian S.
  • Bøggild, Peter
  • Jacobsen, C. J. H.
  • Madsen, Dorte Nørgaard
  • Rasmussen, A. M.
  • Mateiu, Ramona Valentina
  • Appel, C. C.
  • Carlsson, A.
OrganizationsLocationPeople

article

Soldering of Nanotubes onto Microelectrodes

  • Mølhave, Kristian S.
  • Bøggild, Peter
  • Jacobsen, C. J. H.
  • Brorson, M.
  • Madsen, Dorte Nørgaard
  • Rasmussen, A. M.
  • Mateiu, Ramona Valentina
Abstract

Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing solder bonds were formed at the intersection of the nanotube and the electrodes. Current-voltage curves indicated metallic conduction of the nanotubes, with resistances in the range of 9-29 kOmega. Bridges made entirely of the soldering material exhibited resistances on the order of 100 Omega, and the solder bonds were consistently found to be mechanically stronger than the carbon nanotubes.

Topics
  • Carbon
  • nanotube
  • gold
  • decomposition
  • organometallic