People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Seo, Myungeun
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Bilayer-folded lamellar mesophase induced by random polymer sequencecitations
- 2014RAFT copolymerization of acid chloride-containing monomerscitations
- 2014Optimization of long-range order in solvent vapor annealed poly(styrene)- block -poly(lactide) thin films for nanolithographycitations
- 2013One-step synthesis of cross-linked block polymer precursor to a nanoporous thermosetcitations
- 2013Magnetic microrheology of block copolymer solutionscitations
- 2011Cross-linked nanoporous materials from reactive and multifunctional block polymerscitations
Places of action
Organizations | Location | People |
---|
article
One-step synthesis of cross-linked block polymer precursor to a nanoporous thermoset
Abstract
<p>Using a simultaneous block polymerization/in situ cross-linking from a heterofunctional initiator approach, we produced a nanostructured and cross-linked block polymer in a single step from a ternary mixture of monomers and used it as a precursor for a cross-linked nanoporous material. Using 2-(benzylsulfanylthiocarbonylsulfanyl)ethanol as a heterofunctional initiator, simultaneous ring-opening transesterification polymerization of d,l-lactide in the presence of tin 2-ethylhexanoate as a catalyst and reversible addition-fragmentation chain transfer polymerization of styrene at 120 C produced a polylactide-b-polystyrene (PLA-b-PS) block polymer. Incorporation of divinylbenzene in the polymerization mixture allowed in situ cross-linking during the simultaneous block polymerization to result in the cross-linked block polymer precursor in one step. This material was converted into cross-linked nanoporous polymer by etching PLA in a basic solution.</p>