People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Natalello, Adrian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Enlarging the toolbox
Abstract
<p>Epoxide termination and functionalization of living poly(ferrocenyldimethylsilane) (PFDMS) is introduced by precapping the living PFDMS with a 4/2 molar mixture of 1,1-diphenylethylene and 1,1- dimethylsilacyclobutane acting as a "carbanion pump" system. Subsequent addition of allyl glycidyl ether (AGE) leads to quantitatively functionalized PFDMS-AGE polymers with molecular weights between 1500 and 15 400 g mol<sup>-1</sup> and polydispersity indices ≤1.10, carrying one hydroxyl group and an additional allylic double bond. PFDMS-AGE was then applied as a macroinitiator for the living anionic ring-opening polymerization of ethylene oxide (EO) to generate amphiphilic and water-soluble poly(ferrocenyldimethylsilane-b-ethylene oxide) block copolymers with a low polydispersity index. All polymers have been characterized by <sup>1</sup>H NMR spectroscopy, DOSY <sup>1</sup>H NMR spectroscopy, size exclusion chromatography (SEC), and MALDI-ToF mass spectrometry. In addition, for the characterization of the morphology of the PFDMS-b-PEO block copolymers transmission electron microscopy (TEM) was performed in methanol, confirming the formation of cylindrical micelles with an organometallic core and polyether corona.</p>