People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Janes, Dustin W.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2016Orthogonally Spin-Coated Bilayer Films for Photochemical Immobilization and Patterning of Sub-10-Nanometer Polymer Monolayerscitations
- 2016Marangoni instability driven surface relief grating in an azobenzene-containing polymer filmcitations
- 2015Modulating Solubility and Enhancing Reactivity of Photo-Cross-Linkable Poly(styrene sulfonyl azide-alt-maleic anhydride) Thin Filmscitations
- 2015Surface tension driven flow in a low molecular weight photopolymer
- 2015Bidirectional Control of Flow in Thin Polymer Films by Photochemically Manipulating Surface Tensioncitations
- 2014A photochemical approach to directing flow and stabilizing topography in polymer filmscitations
- 2014Precision Marangoni-driven patterningcitations
- 2014Surface energy gradient driven convection for generating nanoscale and microscale patterned polymer films using photosensitizerscitations
- 2013Directing convection to pattern thin polymer filmscitations
- 2012Patterning by photochemically directing the Marangoni Effectcitations
Places of action
Organizations | Location | People |
---|
article
Patterning by photochemically directing the Marangoni Effect
Abstract
<p>Polystyrene (PS) that has been exposed to ultraviolet light (UV) undergoes partial dehydrogenation of the alkane polymer backbone which increases its surface energy. Exploiting this photochemistry, we exposed polystyrene films to UV light using a photomask to induce a patterned photochemical reaction producing regions in the film with differing surface energy. Upon heating the solid polymer film with the preprogrammed surface energy pattern to a liquid state, the polymer flows from the low surface energy unexposed regions to high surface energy exposed regions. This flow creates three-dimensional topography by the Marangoni Effect, which describes convective mass transfer due to surface energy gradients. The topographical features can be permanently preserved by quenching the film below its glass to liquid transition temperature. Their shape and organization are only limited by the pattern on the photomask. (Figure Presented).</p>