Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Barker, Sa

  • Google
  • 2
  • 5
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Dual drug-loaded coaxial nanofibers for the treatment of corneal abrasioncitations
  • 2012Identification and molecular interpretation of the effects of drug incorporation on the self-emulsification process using spectroscopic, micropolarimetric and microscopic measurements5citations

Places of action

Chart of shared publication
Craig, Dqm
1 / 2 shared
Tawfik, Ea
1 / 1 shared
Royall, Paul G.
1 / 8 shared
Mercuri, A.
1 / 1 shared
Belton, Ps
1 / 1 shared
Chart of publication period
2020
2012

Co-Authors (by relevance)

  • Craig, Dqm
  • Tawfik, Ea
  • Royall, Paul G.
  • Mercuri, A.
  • Belton, Ps
OrganizationsLocationPeople

article

Identification and molecular interpretation of the effects of drug incorporation on the self-emulsification process using spectroscopic, micropolarimetric and microscopic measurements

  • Barker, Sa
  • Royall, Paul G.
  • Mercuri, A.
  • Belton, Ps
Abstract

Addition of a drug to a self-emulsifying drug delivery system (SEDDS) can affect the emulsification process after administration, leading to variation in the emulsion droplet size formed and potentially its clinical behavior (Mercuri et al., Pharm. Res., 2011, 28, 1540–1551). However, the mechanisms involved and, in particular, the location of the drug within the system are poorly understood. Here, we have investigated the location of a model drug, ibuprofen, in the emulsions formed from a simple anhydrous SEDDS (soybean oil, Tween 80 and Span 80), using a range of physical characterization techniques. 1H NMR studies showed an interaction between the drug and the polyoxyethylene chains of the surfactant Tween 80. Micropolarity assessment of the emulsion droplet interfacial region, using the chemical probes pyrene and Reichardt’s dye, confirmed this interaction, and suggested that the drug was altering the microenvironment around the surfactants, and hence the behavior of the SEDDS with water during emulsification. Both dielectric spectroscopy and polarized light microscopy highlighted the differential behavior with water of placebo and drug-loaded SEDDS, also seen in the initial visual observational studies on the emulsification performance of the SEDDS. 1H NMR studies with three other NSAIDs indicate that this effect is not confined to ibuprofen alone. The study has therefore indicated that the drug's influence on the emulsification process may be related to interactions within the microenvironment of the surfactant layer. Furthermore, such interactions may be usefully identified and characterized using a combination of micropolarity, spectroscopic and microscopic methods.

Topics
  • impedance spectroscopy
  • interfacial
  • Nuclear Magnetic Resonance spectroscopy
  • surfactant
  • Polarized light microscopy