People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Helgesen, Martin
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2017Conjugated Polymers Via Direct Arylation Polymerization in Continuous Flow: Minimizing the Cost and Batch-to-Batch Variations for High-Throughput Energy Conversioncitations
- 2015Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cellscitations
- 2015Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cellscitations
- 2015Roll-to-Roll Printed Silver Nanowire Semitransparent Electrodes for Fully Ambient Solution-Processed Tandem Polymer Solar Cellscitations
- 2015Making Ends Meet: Flow Synthesis as the Answer to Reproducible High-Performance Conjugated Polymers on the Scale that Roll-to-Roll Processing Demandscitations
- 2014All-Solution-Processed, Ambient Method for ITO-Free, Roll-Coated Tandem Polymer Solar Cells using Solution- Processed Metal Filmscitations
- 2013All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cellscitations
- 2013All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cellscitations
- 2013A laboratory scale approach to polymer solar cells using one coating/printing machine, flexible substrates, no ITO, no vacuum and no spincoatingcitations
- 2012Rapid flash annealing of thermally reactive copolymers in a roll-to-roll process for polymer solar cellscitations
- 2011Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methodscitations
- 2011Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methodscitations
- 2011Thermally reactive Thiazolo[5,4-d]thiazole based copolymers for high photochemical stability in polymer solar cellscitations
- 2011Thermally reactive Thiazolo[5,4-d]thiazole based copolymers for high photochemical stability in polymer solar cellscitations
- 2011Fused thiophene/quinoxaline low band gap polymers for photovoltaic's with increased photochemical stabilitycitations
- 2010Influence of the Annealing Temperature on the Photovoltaic Performance and Film Morphology Applying Novel Thermocleavable Materialscitations
- 2010Photovoltaic Performance of Polymers Based on Dithienylthienopyrazines Bearing Thermocleavable Benzoate Esterscitations
Places of action
Organizations | Location | People |
---|
article
Photovoltaic Performance of Polymers Based on Dithienylthienopyrazines Bearing Thermocleavable Benzoate Esters
Abstract
Thermocleavable low-band-gap polymers based on dithienylthienopyrazines were prepared and copolymerized with different donor units like dialkoxybenzene, fluorene, thiophene, and cyclopentadithiophene (CPDT) using both Stille and Suzuki cross-coupling reactions. In the solid state the band gaps are in the range of 1.17−1.37 eV. The polymers were explored as donor materials in bulk heterojunction solar cells together with PCBM as the acceptor material where they were shown to exhibit a photoresponse in the full absorption range up to 900 nm and power conversion efficiencies of up to 1.21% under 1 sun irradiation. A red shift of the absorption edge on going from solution to the solid film was observed for all the polymers. Thermogravimetric analysis of the polymers in the temperature range from 25 to 500 °C showed a weight loss at just above 200 °C, corresponding to loss of the tertiary ester groups, and a second weight loss above 400 °C, corresponding to loss of CO2 and decomposition. Upon thermocleavage the power conversion efficiency decreased for all the polymers while the polymer films became insoluble which was desired in the context of multilayer film processing. Thermocleavable low-band-gap materials can potentially offer better light harvesting, better operational stability, and a higher level of permissible processing conditions due to the insolubility of thermocleaved films in all solvents.