People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Blank, David A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Synthesis, optical properties, and microstructure of a fullerene-terminated poly(3-hexylthiophene)
Abstract
<p>End-functionalized, regioregular poly(3-hexylthiophene) (P3HT) was synthesized by a combination of a controlled polymerization technique and postpolymerization functionalization. Both ends of the polymer chains were terminated with fullerene units to create an internal electron accepting - donating - accepting molecule, methylfulleropyrrolidine - poly(3-hexylthiophene) - methylfulleropyrrolidine (C <sub>60</sub>-P3HT-C <sub>60</sub>). The molecular properties of the polymer were characterized using <sup>1</sup>H NMR spectroscopy, size exclusion chromato-graphy (SEC), ultraviolet - visible (UV - vis) absorption spectroscopy, and fluorescence spectroscopy. These results show that the fullerene units are covalently bound to the polymer chain ends. Differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS), and small-angle X-ray scattering (SAXS) were used to determine the bulk microstructure of the polymers. In addition, atomic force microscopy (AFM) was used to examine spun-cast thin films. These experiments revealed that microphase separation occurs between the main polymer chain and the fullerene end groups and suggests the creation of two distinct semicrystalline regimes in C <sub>60</sub>-P3HT-C <sub>60</sub> that are similar to those seen in a compositionally similar blend of P3HT and C <sub>60</sub>. This comparable domain formation, coupled with the possibility of enhanced charge transfer associated with an internal donor - acceptor material, makes C <sub>60</sub>-P3HT-C <sub>60</sub> a promising candidate as a material in bulk heterojunction organic photovoltaics.</p>