Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stuart, Marc C. A.

  • Google
  • 6
  • 31
  • 110

University of Groningen

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Activation of low-cost stainless-steel electrodes for efficient and stable anion-exchange membrane water electrolysiscitations
  • 2023Temperature-responsive and biocompatible nanocarriers based on clay nanotubes for controlled anti-cancer drug release17citations
  • 2023Temperature-responsive and biocompatible nanocarriers based on clay nanotubes for controlled anti-cancer drug release17citations
  • 2022Lactic acid-derived copolymeric surfactants with monomer distribution profile-dependent solution and thermoresponsive properties7citations
  • 2017Triblock copolymers of styrene and sodium methacrylate as smart materials:synthesis and rheological characterization11citations
  • 2008Cross-linking of multiwalled carbon nanotubes with polymeric amines58citations

Places of action

Chart of shared publication
Li, Nannan
1 / 1 shared
Jayawardhana, Bayu
1 / 10 shared
Aravind, P. V.
1 / 3 shared
Pescarmona, Paolo P.
1 / 16 shared
Zouridi, Leila
1 / 2 shared
Jiang, Tao
1 / 7 shared
Binas, Vassilios
1 / 1 shared
Kyriakou, Vasileios
1 / 5 shared
Rudolf, Petra
3 / 62 shared
Haddadi-Asl, Vahid
2 / 3 shared
Reker-Smit, Catharina
2 / 2 shared
Hemmatpour, Hamoon
2 / 4 shared
Thomas, C. Q. Burgers
1 / 1 shared
Salvati, Anna
2 / 3 shared
Vlijm, Rifka
2 / 2 shared
Burgers, Thomas C. Q.
1 / 1 shared
Yan, Feng
1 / 9 shared
Migliore, Nicola
1 / 7 shared
Guzik, Aleksander
1 / 1 shared
Raffa, Patrizio
2 / 16 shared
Lligadas, Gerard
1 / 3 shared
Moreno, Adrian
1 / 1 shared
Palà, Marc
1 / 2 shared
Picchioni, Francesco
2 / 48 shared
Van Mastrigt, Frank
1 / 2 shared
Franken, Linda E.
1 / 1 shared
Meijerink, Marc
1 / 1 shared
Broekhuis, A. A.
1 / 8 shared
Zhang, Youchun
1 / 1 shared
Landaluce, T. F.
1 / 1 shared
Fausti, D.
1 / 9 shared
Chart of publication period
2024
2023
2022
2017
2008

Co-Authors (by relevance)

  • Li, Nannan
  • Jayawardhana, Bayu
  • Aravind, P. V.
  • Pescarmona, Paolo P.
  • Zouridi, Leila
  • Jiang, Tao
  • Binas, Vassilios
  • Kyriakou, Vasileios
  • Rudolf, Petra
  • Haddadi-Asl, Vahid
  • Reker-Smit, Catharina
  • Hemmatpour, Hamoon
  • Thomas, C. Q. Burgers
  • Salvati, Anna
  • Vlijm, Rifka
  • Burgers, Thomas C. Q.
  • Yan, Feng
  • Migliore, Nicola
  • Guzik, Aleksander
  • Raffa, Patrizio
  • Lligadas, Gerard
  • Moreno, Adrian
  • Palà, Marc
  • Picchioni, Francesco
  • Van Mastrigt, Frank
  • Franken, Linda E.
  • Meijerink, Marc
  • Broekhuis, A. A.
  • Zhang, Youchun
  • Landaluce, T. F.
  • Fausti, D.
OrganizationsLocationPeople

article

Cross-linking of multiwalled carbon nanotubes with polymeric amines

  • Broekhuis, A. A.
  • Picchioni, Francesco
  • Stuart, Marc C. A.
  • Rudolf, Petra
  • Zhang, Youchun
  • Landaluce, T. F.
  • Fausti, D.
Abstract

Functionalization of carbon nanotubes is considered as an essential step to enable their manipulation and application in potential end-use products. In this paper we introduce a new approach to functionalize multiwalled carbon nanotubes (MWNTs) by applying an amidation-type grafting reaction with amino-functionalized alternating polyketones. The functionalized MWNTs were characterized by using thermogravimetric analysis (TGA), X-ray photoemission spectroscopy (XPS), element analysis, Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Around 40 wt % polyamines based on the total weight of the MWNTs can be covalently attached to the surface of the MWNTs. It is found that polyamines act as cross-linking agents to interconnect or cross-link the MWNTs within and between bundles, as demonstrated by SEM and TEM. analysis. After cross-linking, the functionalized MWNTs are insoluble in any solvent. The cross-linked MWNTs can be melt-blended into polyethylene, and the resulting composites show comparable mechanical properties to those obtained by simple blending of "un-cross-linked" nanotubes with polyethylene.

Topics
  • nanocomposite
  • impedance spectroscopy
  • surface
  • Carbon
  • scanning electron microscopy
  • nanotube
  • x-ray photoelectron spectroscopy
  • melt
  • composite
  • transmission electron microscopy
  • thermogravimetry
  • copolymer
  • functionalization
  • Raman spectroscopy
  • amine