People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ikkala, Olli
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024Respiratory rate monitoring with cellulose optical fiber
- 2021Cellulose optical fiber
- 2021Cellulose optical fiber
- 2021Electroferrofluids with nonequilibrium voltage-controlled magnetism, diffuse interfaces, and patternscitations
- 2020Methyl cellulose/cellulose nanocrystal nanocomposite fibers with high ductilitycitations
- 2019Effects of Chloride Concentration on the Water Disinfection Performance of Silver Containing Nanocellulose-based Compositescitations
- 2018Thermal Isomerization of Hydroxyazobenzenes as a Platform for Vapor Sensingcitations
- 2018Thermal Isomerization of Hydroxyazobenzenes as a Platform for Vapor Sensingcitations
- 2018Imaging Inelastic Fracture Processes in Biomimetic Nanocomposites and Nacre by Laser Speckle for Better Toughnesscitations
- 2017Toughness and Fracture Properties in Nacre-Mimetic Clay/Polymer Nanocompositescitations
- 2015Self-assembly of a functional oligo(aniline)-based amphiphile into helical conductive nanowirescitations
- 2015Water-Resistant, Transparent Hybrid Nanopaper by Physical Cross-Linking with Chitosancitations
- 2015Modular Architecture of Protein Binding Units for Designing Properties of Cellulose Nanomaterialscitations
- 2015Enhanced plastic deformations of nanofibrillated cellulose film by adsorbed moisture and protein-mediated interactionscitations
- 2015Hybrid supramolecular and colloidal hydrogels that bridge multiple length scales.
- 2013Photoinduced surface patterning of azobenzene-containing supramolecular dendrons, dendrimers and dendronized polymerscitations
- 2012Facile method for stiff, tough, and strong nanocomposites by direct exfoliation of multilayered graphene into native nanocellulose matrixcitations
- 2010Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathwayscitations
- 2009Solid state nanofibers based on self-assembliescitations
- 2009Solid state nanofibers based on self-assemblies:from cleaving from self-assemblies to multilevel hierarchical constructscitations
- 2008Tuning the electrical switching of polymer/fullerene nanocomposite thin film devices by control of morphologycitations
- 2008Direct Imaging of Nanoscopic Plastic Deformation below Bulk Tg and Chain Stretching in Temperature-Responsive Block Copolymer Hydrogels by Cryo-TEMcitations
- 2008Evidence of PPII-like helical conformation and glass transition in a self-assembled solid-state polypeptide-surfactant complexcitations
- 2008Organic memory using [6,6]-phenyl-C 61 butyric acid methyl ester:Morphology, thickness and concentration dependence studiescitations
- 2008Self-assembled poly(4-vinylpyridine) - Surfactant systems using alkyl and alkoxy phenylazophenolscitations
- 2007Hierarchical porosity in self-assemhled polymerscitations
- 2007Hollow inorganic nanospheres and nanotubes with tunable wall thicknesses by atomic layer deposition on self-assembled polymeric templatescitations
- 2007Hollow inorganic nanospheres and nanotubes with tunable wall thicknesses by atomic layer deposition on self-assembled polymeric templatescitations
- 2007Metallic nanoparticles in a polymeric matrix
- 2007Metallic nanoparticles in a polymeric matrix:Electrical impedance switching and negative differential resistance
- 2007Phase behavior and temperature-responsive molecular filters based on self-assembly of polystyrene-block-poly(N-isopropylacrylamide)-block-polystyrenecitations
- 2007Hierarchical porosity in self-assemhled polymers:Post-modification of block copolymer-phenolic resin complexes hy pyrolysis allows the control of micro- and mesoporositycitations
- 2001Self-organization of nitrogen-containing polymeric supramolecules in thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Direct Imaging of Nanoscopic Plastic Deformation below Bulk Tg and Chain Stretching in Temperature-Responsive Block Copolymer Hydrogels by Cryo-TEM
Abstract
This work describes the thermoresponsive transition in polystyrene-block-poly(N-isopropylacrylamide)-block-polystyrene (PS-block-PNIPAM-block-PS) triblock copolymer hydrogels, as obsd. by both direct and reciprocal space in-situ characterization.The hydrogel morphol. was studied in both the dry and wet state, at temps. below and beyond the coil-globule transition of PNIPAM, using vitrified ice cryo-transmission electron microscopy (cryo-TEM), in-situ freeze-drying technique, and small-angle X-ray scattering (SAXS).The selected PS-block-PNIPAM-block-PS triblock copolymers were intentionally designed in such a mol. architecture to self-assemble into spherical and bicontinuous morphol. with the poly(N-isopropylacrylamide) forming the continuous matrix.The phase behavior in bulk was directly investigated by SAXS as a function of temp., while free-standing polymer thin films of samples quenched from different temps., allowed observing by cryo-TEM the changes in hydrogel microstructure.Finally, sublimation of water via controlled freeze-drying in the TEM column allowed studying systems without the presence of vitrified water, which enables direct imaging of the densely connected phys. cross-linked polymer network.By combining these techniques on samples exhibiting both spherical and gyroidal morphologies, it was demonstrated that (i) PNIPAM form phys. connected networks in spherical structures and bicontinuous morphologies in the gyroidal phase, (ii) in PNIPAM chains strands are strongly stretched above the polymer coil-to-globule transition, and (iii) surprisingly, upon the gel swelling process, the PS domains undergo extensive plastic deformation although temp. is always maintained well below the PS glass transition bulk temp.The possible phys. mechanisms responsible for this plastic deformation can be understood in terms of the dependence of PS glass transition temp. on the size of nanometer-scaled domains. [on SciFinder(R)]