People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tenhu, Heikki
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (35/35 displayed)
- 2024Clay Composites by In Situ Polymerization of Ionic Liquid-Based Dispersions
- 2023Clay Composites by In Situ Polymerization of Ionic Liquid-Based Dispersions
- 2022Well-dispersed clay in photopolymerized poly(ionic liquid) matrixcitations
- 2020Poly(N,N-dimethylaminoethyl methacrylate) for removing chromium (VI) through polymer-enhanced ultrafiltration techniquecitations
- 2018Poly(N,N-dimethylaminoethyl methacrylate) for removing chromium (VI) through polymer-enhanced ultrafiltration techniquecitations
- 2017Water-Dispersible Silica-Polyelectrolyte Nanocomposites Prepared via Acid-Triggered Polycondensation of Silicic Acid and Directed by Polycationscitations
- 2016Rheological properties of thermoresponsive nanocomposite hydrogelscitations
- 2016AuNP-Polymeric Ionic Liquid Composite Multicatalytic Nanoreactors for One-Pot Cascade Reactionscitations
- 2016Water-dispersible silica-polyelectrolyte nanocomposites prepared via acid-triggered polycondensation of silicic acid and directed by polycations.citations
- 2016Water-Dispersible Silica-Polyelectrolyte Nanocomposites Prepared via Acid-Triggered Polycondensation of Silicic Acid and Directed by Polycationscitations
- 2016AuNP−polymeric ionic liquid composite multicatalytic nanoreactors for one-pot cascade reactionscitations
- 2013pH dependent polymer surfactants for hindering BSA adsorption to oil-water interface
- 2013Thermoresponsiveness of PDMAEMA. Electrostatic and stereochemical effectscitations
- 2013Imidazolium-Based Poly(ionic liquid)s as New Alternatives for CO2 Capture.citations
- 2012Polymer-Modulated Optical Properties of Gold Solscitations
- 2012Polymer-Modulated Optical Properties of Gold Solscitations
- 2012IR-sintering of ink-jet printed metal-nanoparticles on papercitations
- 2012Screening of the effect of biocidal agents released from poly (acrylic acid) matrices on mould growthcitations
- 2012Crystal morphology modification by the addition of tailor-made stereocontrolled poly(N-isopropyl acrylamide)citations
- 2011Characterization of Water-Dispersible n-Type Poly(benzimidazobenzophenanthroline) Derivatives.citations
- 2009Poly(ethylene imine) and Tetraethylenepentamine as Protecting Agents for Metallic Copper Nanoparticlescitations
- 2009Grafting of montmorillonite nano-clay with butyl acrylate and methyl methacrylate by atom transfer radical polymerization: Blends with poly(BuA-co-MMA).citations
- 2009Tuning the structure of thermosensitive gold nanoparticle monolayerscitations
- 2009Rheological properties of associative star polymers in aqueous solutionscitations
- 2009Grafting of montmorillonite nano-clay with butyl acrylate and methyl methacrylate by atom transfer radical polymerizationcitations
- 2009Rheological Properties of Associative Star Polymers in Aqueous Solutions: Effect of Hydrophobe Length and Polymer Topologycitations
- 2009Association behavior and properties of copolymers of perfluorooctyl ethyl methacrylate and eicosanyl methacrylatecitations
- 2008Direct Imaging of Nanoscopic Plastic Deformation below Bulk Tg and Chain Stretching in Temperature-Responsive Block Copolymer Hydrogels by Cryo-TEMcitations
- 2007Metallic nanoparticles in a polymeric matrix
- 2007Metallic nanoparticles in a polymeric matrix:Electrical impedance switching and negative differential resistance
- 2007Phase behavior and temperature-responsive molecular filters based on self-assembly of polystyrene-block-poly(N-isopropylacrylamide)-block-polystyrenecitations
- 2006A New method for measuring free drug concentrationcitations
- 2005Physical Properties of Aqueous Solutions of a Thermo-Responsive Neutral Copolymer and an Anionic Surfactantcitations
- 2005Association in Aqueous Solutions of a Thermoresponsive PVCL-g-C11EO42 Copolymer.citations
- 2004Complexation of DNA with Poly(methacryl oxyethyl trimethylammonium chloride) and Its Poly(oxyethylene) Grafted Analogue.citations
Places of action
Organizations | Location | People |
---|
article
Direct Imaging of Nanoscopic Plastic Deformation below Bulk Tg and Chain Stretching in Temperature-Responsive Block Copolymer Hydrogels by Cryo-TEM
Abstract
This work describes the thermoresponsive transition in polystyrene-block-poly(N-isopropylacrylamide)-block-polystyrene (PS-block-PNIPAM-block-PS) triblock copolymer hydrogels, as obsd. by both direct and reciprocal space in-situ characterization.The hydrogel morphol. was studied in both the dry and wet state, at temps. below and beyond the coil-globule transition of PNIPAM, using vitrified ice cryo-transmission electron microscopy (cryo-TEM), in-situ freeze-drying technique, and small-angle X-ray scattering (SAXS).The selected PS-block-PNIPAM-block-PS triblock copolymers were intentionally designed in such a mol. architecture to self-assemble into spherical and bicontinuous morphol. with the poly(N-isopropylacrylamide) forming the continuous matrix.The phase behavior in bulk was directly investigated by SAXS as a function of temp., while free-standing polymer thin films of samples quenched from different temps., allowed observing by cryo-TEM the changes in hydrogel microstructure.Finally, sublimation of water via controlled freeze-drying in the TEM column allowed studying systems without the presence of vitrified water, which enables direct imaging of the densely connected phys. cross-linked polymer network.By combining these techniques on samples exhibiting both spherical and gyroidal morphologies, it was demonstrated that (i) PNIPAM form phys. connected networks in spherical structures and bicontinuous morphologies in the gyroidal phase, (ii) in PNIPAM chains strands are strongly stretched above the polymer coil-to-globule transition, and (iii) surprisingly, upon the gel swelling process, the PS domains undergo extensive plastic deformation although temp. is always maintained well below the PS glass transition bulk temp.The possible phys. mechanisms responsible for this plastic deformation can be understood in terms of the dependence of PS glass transition temp. on the size of nanometer-scaled domains. [on SciFinder(R)]