Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Irwin, Matthew T.

  • Google
  • 3
  • 6
  • 219

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2016Lithium Salt-Induced Microstructure and Ordering in Diblock Copolymer/Homopolymer Blends53citations
  • 2016Structure-conductivity relationships in ordered and disordered salt-doped diblock copolymer/homopolymer blends65citations
  • 2015Evolution of morphology, modulus, and conductivity in polymer electrolytes prepared via polymerization-induced phase separation101citations

Places of action

Chart of shared publication
Hickey, Robert J.
2 / 3 shared
Xie, Shuyi
2 / 6 shared
Bates, Frank S.
2 / 90 shared
So, Soonyong
1 / 2 shared
Schulze, Morgan W.
1 / 5 shared
Mcintosh, Lucas D.
1 / 4 shared
Chart of publication period
2016
2015

Co-Authors (by relevance)

  • Hickey, Robert J.
  • Xie, Shuyi
  • Bates, Frank S.
  • So, Soonyong
  • Schulze, Morgan W.
  • Mcintosh, Lucas D.
OrganizationsLocationPeople

article

Evolution of morphology, modulus, and conductivity in polymer electrolytes prepared via polymerization-induced phase separation

  • Schulze, Morgan W.
  • Irwin, Matthew T.
  • Mcintosh, Lucas D.
Abstract

<p>Polymer electrolytes are alternatives to liquid electrolytes traditionally used in electrochemical devices such as lithium-ion batteries and fuel cells. In particular, block polymer electrolytes are promising candidates because they self-assemble into well-defined microstructures, in which orthogonal properties can be integrated into a single material (e.g., high modulus in domain A, fast ion transport in domain B). However, the performance of block polymer electrolytes often falls short, due to the lack of long-range continuity of both domains and relatively low strength. We recently reported a simple, one-pot synthetic strategy to prepare polymer electrolytes with the highest reported combination of modulus and ionic conductivity, attributes enabled by a co-continuous, cross-linked network morphology. In this work we aim to understand the mechanism by which this nanoscale morphology is formed by performing a series of in situ, time-resolved experiments-small-angle X-ray scattering, conductivity, rheology, and reaction kinetics-to monitor the electrolyte as it transitions from a macroscopically homogeneous liquid to a microphase-separated solid. The results suggest that the chain connectivity of the diblock gives rise to isotropic concentration fluctuations that increase in amplitude and coherence such that the network morphology is ultimately produced. The kinetic trapping of this network morphology by chemical cross-linking prior to the ordering transition is shown to be critically important to the resulting advantageous bulk electrolyte properties.</p>

Topics
  • impedance spectroscopy
  • microstructure
  • polymer
  • phase
  • experiment
  • strength
  • Lithium
  • isotropic
  • X-ray scattering