Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Perez-Baena, Irma

  • Google
  • 2
  • 6
  • 256

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2014How far are single-chain polymer nanoparticles in solution from the globular state?177citations
  • 2014Efficient route to compact single-chain nanoparticles79citations

Places of action

Chart of shared publication
Moreno, Angel J.
2 / 10 shared
Colmenero, Juan
2 / 13 shared
Lo Verso, Federica
2 / 11 shared
Pomposo, José A.
2 / 14 shared
Arbe, Arantxa
2 / 26 shared
Asenjo-Sanz, Isabel
1 / 5 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Moreno, Angel J.
  • Colmenero, Juan
  • Lo Verso, Federica
  • Pomposo, José A.
  • Arbe, Arantxa
  • Asenjo-Sanz, Isabel
OrganizationsLocationPeople

article

Efficient route to compact single-chain nanoparticles

  • Moreno, Angel J.
  • Asenjo-Sanz, Isabel
  • Perez-Baena, Irma
  • Colmenero, Juan
  • Lo Verso, Federica
  • Pomposo, José A.
  • Arbe, Arantxa
Abstract

<p>We report a new strategy for the rapid, efficient synthesis of single-chain polymer nanoparticles (SCNPs) having a nearly globular morphology in solution, by employing photoactivated radical-mediated thiol-yne coupling (TYC) reaction as the driving force for chain folding/collapse. Confirmation of SCNP formation was carried out by means of a combination of complementary experimental techniques. Size exclusion chromatography (SEC), small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS) measurements revealed a considerable degree of compaction of the resulting SCNPs. This finding was confirmed by molecular dynamics (MD) simulations. The analysis of the scattering form factors provided by SAXS revealed a scaling exponent ν ≈ 0.37 for the dependence of the SCNP size on its molecular weight. This value is close to that expected for globular objects, ν = 1/3, and much smaller than the usual observation (ν ≈ 0.5) for SCNPs synthesized with most of the state-of-the-art techniques, which instead show sparse morphologies. Insight into the physical origin of this fundamental difference with standard SCNPs was obtained from molecular dynamics simulations. Namely, intrachain bonding mediated by relatively long cross-linkers combined with the use of bifunctional groups in the SCNP precursor largely increases the probability of forming long-range loops which are efficient for global chain compaction.</p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • polymer
  • simulation
  • molecular dynamics
  • forming
  • molecular weight
  • size-exclusion chromatography
  • small angle x-ray scattering
  • dynamic light scattering