People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kurzbach, Dennis
University of Vienna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Stimuli-Responsive Tertiary Amine Functional PEGs Based on N,N-Dialkylglycidylamines
Abstract
<p>Amine-functional poly(ethylene glycol) (PEG) copolymers have been prepared that exhibit thermo- and pH- responsive behavior in aqueous solution. Three novel tertiary di(n-alkyl)glycidylamine monomers have been introduced for anionic ring-opening copolymerization (AROcP) with ethylene oxide (EO): N,N-di(n-butyl)glycidylamine (DButGA), N,N-di(n-hexyl)glycidylamine (DHexGA), and N,N-di(n-octyl)glycidylamine (DOctGA). Via controlled AROcP we synthesized well-defined (M<sub>w</sub>/M<sub>n</sub> = 1.05-1.14), water-soluble block- and gradient-type PEG copolymers, containing up to 25 mol % of the respective dialkylglycidylamine comonomer. Molecular weights ranged from 4900 to 12-000 g mol<sup>-1</sup>. Detailed in-situ<sup>1</sup>H NMR kinetics and<sup>13</sup>C triad analyses elucidate the microstructures of the copolymers and the relative reactivity of the novel comonomers. Notably, the n-alkyl chain length had no significant influence on the relative reactivity of the glycidylamine comonomers. Calculated reactivity ratios ranged from r<sub>EO</sub> = 1.84, r<sub>DButGA</sub> = 0.49 to r<sub>EO</sub> = 1.78, r<sub>DOctGA</sub> = 0.42, manifesting the formation of gradient copolymers. Thermo- and pH-responsive properties of these copolymers are precisely tunable by the comonomer ratio, and cloud points in aqueous solution can be adjusted between 21 and 93 °C. Electron paramagnetic resonance (EPR) spectroscopic studies with TEMPO as a spin probe were conducted to elucidate host-guest interactions of the copolymers. Unexpectedly, the n-alkyl chain length of the different glycidylamine comonomers only influences the inverse phase transition of the gradient copolymers, but not of the block copolymers on the nanoscale. Self-assembly of the block- and gradient-type copolymers in aqueous alkaline solution by both static and dynamic light scattering has also been investigated after confirming the existence of pure unimers in methanol.</p>