People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hu, Zijhun
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
The Ferro- to Paraelectric Curie Transition of a Strongly Confined Ferroelectric Polymer
Abstract
Nanopillars of ferroelectric polymers are of strong interest for the fabrication of low-cost nanoscale actuators and memories of high density. However, a limiting factor of polymers compared to inorganic ferroelectric materials is their low ferro- to paraelectric Curie transition, a problem compounded by the possible further decrease of the Curie temperature in nanostructures as was suggested by previous studies. Here we develop a methodology based on piezoresponse force microscopy to study the thermal stability of data stored in free-standing poled and annealed nanopillars of ferroelectric poly(vinylidene fluoride-ran-trifluoroethylene), P(VDF-TrFE), and thereby demonstrate that the Curie transition of a properly processed strongly confined ferroelectric polymer is not significantly modified compared to the bulk material, at least down to a mass as small as ca. 560 attograms corresponding to ca. 1500 chains only.