Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Caelers, Harm J. M.

  • Google
  • 1
  • 4
  • 78

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Kinetics of the polymorphic transition in isotactic poly(1-butene) under uniaxial extension. New insights from designed mechanical histories78citations

Places of action

Chart of shared publication
Cavallo, Dario
1 / 44 shared
Govaert, Leon E.
1 / 90 shared
Portale, Giuseppe, A.
1 / 57 shared
Kanters, Marc J. W.
1 / 7 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Cavallo, Dario
  • Govaert, Leon E.
  • Portale, Giuseppe, A.
  • Kanters, Marc J. W.
OrganizationsLocationPeople

article

Kinetics of the polymorphic transition in isotactic poly(1-butene) under uniaxial extension. New insights from designed mechanical histories

  • Caelers, Harm J. M.
  • Cavallo, Dario
  • Govaert, Leon E.
  • Portale, Giuseppe, A.
  • Kanters, Marc J. W.
Abstract

<p>Isotactic poly(1-butene) (i-PBu) crystallizes upon cooling from the melt in a metastable tetragonal structure (form II), which slowly evolves toward the state of ultimate stability, i.e., the trigonal form I. It is well-known that this polymorphic transformation, which typically requires few weeks at room temperature, can be greatly accelerated by the application of mechanical stresses and/or deformation. However, the exact mechanism of this kinetics enhancement is not completely understood. In this work, the polymorphic transformation of i-PBu under tensile deformation is investigated in details. Thanks to properly designed mechanical histories-including experiments at different true strain and true stress rates-and to in situ wide-angle X-ray diffraction experiments, the role of the various deformation parameters is elucidated. The use of different time scales during the experiments enabled us to gain kinetics data on the transition, information which is disregarded in current literature. The set of experiments performed permit to highlight a stress-driven mechanism, active up to a fraction of transformed form I of about 0.4-0.5. After this value is reached, the stress-transformation time superposition principle does not hold anymore and the transition kinetics slows down, since a major part of the total applied stress is carried by the mechanically stronger form I lamellae.</p>

Topics
  • impedance spectroscopy
  • experiment
  • melt
  • lamellae
  • wide-angle X-ray diffraction