People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sotta, Paul
French National Centre for Scientific Research
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023CHARACTERIZATION OF STICKY DEBRIS GENERATED DURING SMEAR WEARcitations
- 2023Double Networks: Hybrid Hydrogels with Clustered Silicacitations
- 2023Role of Polymer–Particle Adhesion in the Reinforcement of Hybrid Hydrogelscitations
- 2020Multiscale Structural Characterization of Biobased Diallyl–Eugenol Polymer Networkscitations
- 2020Multiscale Structural Characterization of Biobased Diallyl–Eugenol Polymer Networkscitations
- 2020Competitive Adsorption between a Polymer and Solvents onto Silicacitations
- 2019Thermoreversible Gelation of a Vinylidene Fluoride‐Based Copolymer in Methyl Ethyl Ketone: Dynamics and Structurecitations
- 2019Multiscale Structural Characterization of Biocompatible Poly(trimethylene carbonate) Photoreticulated Networkscitations
- 2017Tensile Deformation of Bulk Polyamide 6 in the Preyield Strain Range. Micro-Macro Strain Relationships via in Situ SAXS and WAXScitations
- 2016Dielectric Spectroscopy of a Stretched Polymer Glass: Heterogeneous Dynamics and Plasticitycitations
- 2013Reinforcement in Natural Rubber Elastomer Nanocomposites: Breakdown of Entropic Elasticitycitations
- 2013Mechanical Properties of Thin Confined Polymer Films Close to the Glass Transition in the Linear Regime of Deformation: Theory and Simulations
- 2013Studying Model samples to understand mechanical Properties of filled Elastomers
- 2012Mechanical properties of thin confined polymer films close to the glass transition in the linear regime of deformation: theory and simulations.citations
- 2012Mechanical properties of thin confined polymer films close to the glass transition in the linear regime of deformation: theory and simulations
- 2011Effect of Tear Rotation on Ultimate Strength in Reinforced Natural Rubbercitations
- 2003Gradient of glass transition temperature in filled elastomerscitations
- 2002Evidence for the Shift of the Glass Transition near the Particles in Silica-Filled Elastomerscitations
Places of action
Organizations | Location | People |
---|
article
Reinforcement in Natural Rubber Elastomer Nanocomposites: Breakdown of Entropic Elasticity
Abstract
We propose an approach based on the combination of different techniques in order to discriminate various reinforcement effects in vulcanized natural rubber elastomers with various cross-link densities, filled with carbon black or silica: mechanical response, independent measurements of the cross-link density by proton multiple-quantum NMR, and measurements of chain segment orientation under stretching by X-ray scattering. We show that, while the modulus measured in dynamical mechanical measurements decreases as the strain amplitude increases (Payne effect), the response of the elastomer matrix in terms of average chain segment orientation under stretching measured by X-ray scattering stays constant. The amplification of average chain segment orientation is comparable to the amplification of modulus measured at medium/large strain amplitude. By analyzing the deviations with respect to the behavior of the pure unfilled elastomer matrix, we show that the contribution due to strain amplification effects in the elastomer matrix can be selectively distinguished. We show that the mechanical response at medium/large strains is essentially driven by strain amplification effects, while, in the linear regime, there is a strong additional reinforcement which is not related to the properties of the elastomer matrix. Hypothesis on the origin of this additional reinforcement are suggested and discussed.