People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Howdle, Steven M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024A facile one step route that introduces functionality to polymer powders for laser sinteringcitations
- 2023Modification of linear polyethylenimine with supercritical CO2 : from fluorescent materials to covalent cross-linkscitations
- 2022Antimicrobial ‘inks’ for 3D printing: block copolymer-silver nanoparticle composites synthesised using supercritical CO2citations
- 2021Amylose/cellulose nanofiber composites for all-natural, fully biodegradable and flexible bioplasticscitations
- 2020Starch/Poly(glycerol-adipate) Nanocomposites: A Novel Oral Drug Delivery Devicecitations
- 2020Low-temperature and purification-free stereocontrolled ring-opening polymerisation of lactide in supercritical carbon dioxidecitations
- 2019Hydrocarbon based stabilisers for the synthesis of cross-linked poly(2-hydroxyethyl methacrylate) particles in supercritical carbon dioxidecitations
- 2019Monitoring morphology evolution within block copolymer microparticles during dispersion polymerisation in supercritical carbon dioxidecitations
- 2014A high pressure cell for supercritical CO2 on-line chemical reactions studied with x-ray techniquescitations
- 2013Porous copolymers of ε-caprolactone as scaffolds for tissue engineeringcitations
- 2013Towards superhydrophobic coatings made by non-fluorinated polymers sprayed from a supercritical solutioncitations
- 2009Continuous flow supercritical chemical fluid deposition of optoelectronic quality CdScitations
- 2009Electrodeposition of metals from supercritical fluidscitations
- 2009Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffoldscitations
- 2006Surface enhanced Raman scattering using metal modified microstructured optical fiber substratescitations
- 2006Surface enhanced Raman scattering using metal modified microstructured optical fibre substratescitations
Places of action
Organizations | Location | People |
---|
article
Porous copolymers of ε-caprolactone as scaffolds for tissue engineering
Abstract
<p>A series of random copolymers were synthesized via the copolymerization of a carbohydrate lactone, acetic acid 5-acetoxy-6-oxotetrahydropyran-2-yl methyl ester (1), and e-caprolactone. The copolymers were characterized by nuclear magnetic resonance (NMR) spectroscopy, size exclusion chromatography (SEC), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). Copolymers (P1-P4) were produced with typical carbohydrate ester compositions of 1-4 mol %. These copolymers are semi-crystalline and can be processed into thin films with Young's moduli of 300-420 MPa, values that exceed that for polycaprolactone (PCL). The copolymers were processed using supercritical carbon dioxide (scCO(2), 35 degrees C, 200 bar) into foamed, porous scaffolds, which were characterized by dynamic mechanical thermal analyses (DMTA), mercury porosimetry, and scanning electron microscopy (SEM). The copolymer foams showed increased pore size with increasing carbohydrate ester content. The average pore size increased from 71 mu m (PCL) to 319 mu m (P4). The foamed scaffolds have normalized storage moduli ranging from 37 MPa cm(3) g(-1) (P4) to 109 MPa cm(3) (P1). A representative copolymer foamed scaffold, tested according to ISO 10993-5 criteria, was cytocompatible for cell culture. MC3T3 cells cultured on a film of this copolymer showed increased relative metabolic activities compared to cells cultured on a PCL film. When primary bovine chondrocytes were cultured on the foamed scaffolds, increased cell penetration into the random copolymer foam was observed compared to PCL foams.</p>