People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wurm, Frederik R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (42/42 displayed)
- 2024Helical Polyamines
- 2023Copolymerizing Lignin for Tuned Properties of 3D-Printed PEG-Based Photopolymerscitations
- 2023Biodegradable polyphosphoester micelles act as both background-free 31P magnetic resonance imaging agents and drug nanocarrierscitations
- 2023Water-soluble polyphosphonate-based bottlebrush copolymers via aqueous ring-opening metathesis polymerizationcitations
- 2023The microstructure of polyphosphoesters controls polymer hydrolysis kinetics from minutes to yearscitations
- 2023Real-time 31P NMR reveals different gradient strengths in polyphosphoester copolymers as potential MRI-traceable nanomaterialscitations
- 2023Reversible acetalization of cellulosecitations
- 2023Towards more homogeneous character in 3D printed photopolymers by the addition of nanofillerscitations
- 2022Real-Time 1H and 31P NMR spectroscopy of the copolymerization of cyclic phosphoesters and trimethylene carbonate reveals transesterification from gradient to random copolymerscitations
- 2021Green synthesis and characterization of poly(glycerol-azelaic acid) and its nanocomposites for applications in regenerative medicinecitations
- 2021Facile template preparation of novel electroactive scaffold composed of polypyrrole-coated poly(glycerol-sebacate-urethane) for tissue engineering applicationscitations
- 2021RNA-inspired intramolecular transesterification accelerates the hydrolysis of polyethylene-like polyphosphoesterscitations
- 2021Display of hidden properties of flexible aerogel based on bacterial cellulose/polyaniline nanocomposites with helping of multiscale modelingcitations
- 2020Intrinsic flame retardant phosphonate-based vitrimers as a recyclable alternative for commodity polymers in composite materialscitations
- 2020Developing antibacterial superhydrophobic coatings based on polydimethylsiloxane/silver phosphate nanocompositescitations
- 2020Controlling the biodegradation rates of poly(globalide-co-ε-caprolactone) copolymers by post polymerization modificationcitations
- 2019Matrix matterscitations
- 2019Supercooled Water Drops Do Not Freeze During Impact on Hybrid Janus Particle-Based Surfacescitations
- 2019Copolymerization of Cyclic Phosphonate and Lactide: Synthetic Strategies toward Control of Amphiphilic Microstructurecitations
- 2018Surface-attached poly(phosphoester)-hydrogels with benzophenone groupscitations
- 2018Temperature responsive poly(phosphonate) copolymerscitations
- 2017Poly(alkyl ethylene phosphonate)scitations
- 2017Acid-labile surfactants based on poly(ethyleneglycol), carbon dioxide and propylene oxidecitations
- 2016Fast ultrasound assisted synthesis of chitosan-based magnetite nanocomposites as a modified electrode sensorcitations
- 2016Sequence-Controlled Polymers via Simultaneous Living Anionic Copolymerization of Competing Monomerscitations
- 2016Acid-Labile Amphiphilic PEO-b-PPO-b-PEO Copolymerscitations
- 2016Processing and adjusting the hydrophilicity of poly(oxymethylene) (co)polymerscitations
- 2016Poly(phosphorodiamidate)s by Olefin Metathesis Polymerization with Precise Degradationcitations
- 2016Side-chain poly(phosphoramidate)scitations
- 2015Vinyl ferrocenyl glycidyl ethercitations
- 2014Ferrocene-containing multifunctional polyetherscitations
- 2014Stabilization of nanoparticles synthesized by miniemulsion polymerization using "green" amino-acid based surfactantscitations
- 2013Enlarging the toolboxcitations
- 2013Microstructure analysis of biocompatible phosphoester copolymerscitations
- 2013Ferrocenyl glycidyl ethercitations
- 2013Unsaturated poly(phosphoester)s via ring-opening metathesis polymerizationcitations
- 2012Hyperbranched Polymerscitations
- 2011Rapid access to polyfunctional lipids with complex architecture via oxyanionic ring-opening polymerizationcitations
- 2011PEG-based multifunctional polyethers with highly reactive vinyl-ether side chains for click-type functionalizationcitations
- 2010"Functional poly(ethylene glycol)"citations
- 2008Carbanions on tap - Living anionic polymerization in a microstructured reactorcitations
- 2008Ionic polymerizations in microstructured reactors
Places of action
Organizations | Location | People |
---|
article
Ferrocenyl glycidyl ether
Abstract
<p>The first ferrocene-containing epoxide monomer, ferrocenyl glycidyl ether (fcGE), is introduced. The monomer has been copolymerized with ethylene oxide (EO). This leads to electroactive, water-soluble, and thermoresponsive poly(ethylene glycol) (PEG) derived copolyethers. Anionic homo- and copolymerization of fcGE with EO was possible. Molecular weights could be varied from 2000 to 10 000 g mol<sup>-1</sup>, resulting in polymers with narrow molecular weight distribution (M<sub>w</sub>/M<sub>n</sub> = 1.07-1.20). The ferrocene (fc) content was varied from 3 to 30 mol %, obtaining water-soluble materials up to 10 mol % incorporation of the apolar ferrocenyl comonomer. Despite the steric bulk of fcGE, random copolymers were obtained, as confirmed via detailed <sup>1</sup>H NMR kinetic measurements as well as <sup>13</sup>C NMR studies of the polymer microstructure, including detailed triad characterization. In addition, the poly(fcGE) homopolymer has been prepared. All water-soluble copolyethers with fc side chains exhibited a lower critical solution temperature (LCST) in the range 7.2-82.2 C in aqueous solution, depending on the amount of fcGE incorporated. The LCST is further tunable by oxidation/reduction of ferrocene, as demonstrated by cyclic voltammetry. Investigation of the electrochemical properties by cyclovoltammetry revealed that the iron centers can be oxidized reversibly. Further, to evaluate the potential for biomedical application, cell viability tests of the fc-containing PEG copolymers were performed on a human cervical cancer cell line (HeLa), revealing good biocompatibility only in the case of low amounts of fcGE incorporated (below 5%). Significant cytotoxic behavior was observed with fcGE content exceeding 5%. The ferrocene-substituted copolyethers are promising for novel redox sensors and create new options for the field of organometallic (co)polymers in general.</p>