Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Appel, Eric

  • Google
  • 2
  • 13
  • 117

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Lipid Nanodiscs via Ordered Copolymers46citations
  • 2011Postpolymerization modification of hydroxyl-functionalized polymers with isocyanates71citations

Places of action

Chart of shared publication
Mann, Joseph
1 / 1 shared
Muir, Ben
1 / 10 shared
Spakowitz, Andrew
1 / 1 shared
Cheng, Yifan
1 / 1 shared
Howard, Shaun
1 / 4 shared
Postma, Almar
1 / 9 shared
Autzen, Henriette
1 / 1 shared
Faust, Bryan
1 / 1 shared
Smith, Anton
1 / 3 shared
Barrio, Jesus Del
1 / 1 shared
Biedermann, Frank
1 / 3 shared
Gruendling, Till
1 / 2 shared
Scherman, Oren
1 / 2 shared
Chart of publication period
2020
2011

Co-Authors (by relevance)

  • Mann, Joseph
  • Muir, Ben
  • Spakowitz, Andrew
  • Cheng, Yifan
  • Howard, Shaun
  • Postma, Almar
  • Autzen, Henriette
  • Faust, Bryan
  • Smith, Anton
  • Barrio, Jesus Del
  • Biedermann, Frank
  • Gruendling, Till
  • Scherman, Oren
OrganizationsLocationPeople

article

Postpolymerization modification of hydroxyl-functionalized polymers with isocyanates

  • Appel, Eric
  • Barrio, Jesus Del
  • Biedermann, Frank
  • Gruendling, Till
  • Scherman, Oren
Abstract

The postpolymerization functionalization of hydroxyl-group terminated polymers (Mn in the range of 1000-6000 g mol-1) such as poly(ethylene glycol) (PEG), poly(N-isopropylacrylamide) (PNIPAM), poly(N,N-dimethylacrylamide) (PDMAM), and poly(tert-butyl acrylate) (PtBA) with a wide range of functional isocyanate derivatives such as azobenzene, viologen, and anthracene has been investigated. It was shown by 1H and 13C NMR, GPC, Fourier transform infrared spectroscopy (FTIR), and electrospray ionization mass spectrometry (ESI-MS) that a high degree of end-group conversion, typically >98%, with little or no formation of side products can be achieved at ambient temperature. PNIPAM, PDMAM, PtBA, and PHEAM polymers have been obtained by reversible addition-fragmentation chain transfer (RAFT) radical polymerization from a hydroxyl-group containing chain transfer agent (CTA). The formation of the carbamate has been shown to be compatible with the trithiocarbonate end-group of the RAFT polymers. Additionally, this approach allows for the direct functionalization of RAFT polymers without the need of additional steps such as deprotection or aminolysis of the CTA. This route was subsequently used for the preparation of a variety of side-chain functional polymers from poly(N-hydroxyethyl acrylamide) (PHEAM). Three different high yielding methods have been employed to prepare the isocyanates (R-NCO). Either amino or carboxylic acid precursors have been converted into the desired R-NCO or hydroxyl group moieties have been reacted with an excess of 1,6-hexamethylene diisocyanate (HDI) to statistically form the monofunctional product. © 2011 American Chemical Society.

Topics
  • polymer
  • Nuclear Magnetic Resonance spectroscopy
  • functionalization
  • Fourier transform infrared spectroscopy
  • spectrometry
  • carboxylic acid
  • electrospray ionisation
  • electrospray ionisation mass spectrometry