Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Daniel, Christophe

  • Google
  • 7
  • 31
  • 241

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2023Extended <i>Q</i>-range small-angle neutron scattering to understand the morphology of proton-exchange membranes: the case of the functionalized syndiotactic-polystyrene model system4citations
  • 2023Extended Q -range small-angle neutron scattering to understand the morphology of proton-exchange membranes: the case of the functionalized syndiotactic-polystyrene model system4citations
  • 2022Tailoring novel polymer/UTSA-16 hybrid aerogels for efficient CH4/CO2 separation10citations
  • 2012Monolithic nanoporous-crystalline aerogels based on PPO42citations
  • 2011Nanoporous crystalline phases of poly(2,6-dimethyl-1,4-phenylene)oxide85citations
  • 2011Aerogels and polymorphism of isotactic poly(4-methyl-pentene-1)50citations
  • 2010Hydrogen adsorption by δ and ε crystalline phases of syndiotactic polystyrene aerogels46citations

Places of action

Chart of shared publication
Schiavone, Maria-Maddalena
2 / 4 shared
Golla, Manuchar
2 / 2 shared
Allgaier, Jürgen
2 / 8 shared
Iwase, Hiroki
2 / 5 shared
Arima-Osonoi, Hiroshi
2 / 2 shared
Maróti, Boglárka
1 / 1 shared
Szentmiklósi, László
1 / 2 shared
Takata, Shin-Ichi
2 / 4 shared
Radulescu, Aurel
2 / 29 shared
Lamparelli, David Hermann
2 / 3 shared
Zhao, Yue
1 / 9 shared
Szentmiklosi, Laszlo
1 / 2 shared
Maroti, Boglarka
1 / 2 shared
Bonino, Francesca
1 / 4 shared
Venditto, Vincenzo
1 / 3 shared
Atzori, Cesare
1 / 7 shared
Crocellà, Valentina
1 / 5 shared
Antico, Pasqualmorica
1 / 1 shared
Bordiga, Silvia
1 / 22 shared
Porcaro, Natale G.
1 / 1 shared
Signorile, Matteo
1 / 4 shared
Grande, Carlos A.
1 / 1 shared
Longo, Simona
2 / 2 shared
Guerra, Gaetano
4 / 10 shared
Vitillo, Jenny Grazia
4 / 21 shared
Cardea, Stefano
1 / 4 shared
Fasano, Gianluca
2 / 2 shared
Milano, Giuseppe
1 / 7 shared
Spoto, Giuseppe
1 / 10 shared
Figueroa-Gerstenmaier, Susana
1 / 2 shared
Zavorotynska, Olena
1 / 5 shared
Chart of publication period
2023
2022
2012
2011
2010

Co-Authors (by relevance)

  • Schiavone, Maria-Maddalena
  • Golla, Manuchar
  • Allgaier, Jürgen
  • Iwase, Hiroki
  • Arima-Osonoi, Hiroshi
  • Maróti, Boglárka
  • Szentmiklósi, László
  • Takata, Shin-Ichi
  • Radulescu, Aurel
  • Lamparelli, David Hermann
  • Zhao, Yue
  • Szentmiklosi, Laszlo
  • Maroti, Boglarka
  • Bonino, Francesca
  • Venditto, Vincenzo
  • Atzori, Cesare
  • Crocellà, Valentina
  • Antico, Pasqualmorica
  • Bordiga, Silvia
  • Porcaro, Natale G.
  • Signorile, Matteo
  • Grande, Carlos A.
  • Longo, Simona
  • Guerra, Gaetano
  • Vitillo, Jenny Grazia
  • Cardea, Stefano
  • Fasano, Gianluca
  • Milano, Giuseppe
  • Spoto, Giuseppe
  • Figueroa-Gerstenmaier, Susana
  • Zavorotynska, Olena
OrganizationsLocationPeople

article

Hydrogen adsorption by δ and ε crystalline phases of syndiotactic polystyrene aerogels

  • Milano, Giuseppe
  • Daniel, Christophe
  • Guerra, Gaetano
  • Vitillo, Jenny Grazia
  • Spoto, Giuseppe
  • Figueroa-Gerstenmaier, Susana
  • Zavorotynska, Olena
Abstract

<p>The H<sub>2</sub> uptake from s-PS samples exhibiting different crystalline phases and different morphologies has been studied by gravimetric measurements at 77 K in the hydrogen pressure range from 0 up to 1.7 MPa and compared with molecular simulations relative to s-PS crystals. Gravimetric experiments show that the molecular hydrogen sorption is strongly dependent on the sample morphology and is maximum for low-density polymer aerogels. However, independently of the morphology, the H<sub>2</sub> uptake is minimum for the dense β and γ crystalline phases, intermediate for the channel-shaped nanoporous ε phase, and maximum for the cavity-shaped nanoporous δ phase. In particular, although the two nanoporous crystalline phases present essentially the same density (0.98 g/cm<sup>3</sup>), the hydrogen uptake from the δ phase is roughly double with respect to the uptake from the ε phase, both for powders and for aerogels. Infrared measurements and molecular simulations well agree with these quantitative sorption data and clearly indicate that, for both low and high pressure, the hydrogen molecules are preferentially adsorbed into the nanoporous crystalline phases. In particular, molecular simulations indicate that the maximum average hydrogen uptake is of nearly 3 molecules per cavity of the δ phase and of nearly 3.5 molecules per unit height of the channels of the ε phase.</p>

Topics
  • density
  • impedance spectroscopy
  • morphology
  • polymer
  • experiment
  • simulation
  • crystalline phase
  • Hydrogen