People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vitillo, Jenny Grazia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2018Understanding and Controlling the Dielectric Response of Metal–Organic Frameworkscitations
- 2018Time-resolved operando studies of carbon supported Pd nanoparticles under hydrogenation reactions by X-ray diffraction and absorptioncitations
- 2018On the structure of superbasic (MgO)n sites solvated in a faujasite zeolitecitations
- 2018Structure and Host–Guest Interactions of Perylene–Diimide Dyes in Zeolite L Nanochannelscitations
- 2017Core-Shell Structure of Palladium Hydride Nanoparticles Revealed by Combined X-ray Absorption Spectroscopy and X-ray Diffractioncitations
- 2014Evolution and reversibility of host/guest interactions with temperature changes in a methyl red@palygorskite polyfunctional hybrid nanocompositecitations
- 2012Evolution of host/guest interactions with heating in a palygorskite/methyl red (Maya Red) hybrid composite
- 2012Monolithic nanoporous-crystalline aerogels based on PPOcitations
- 2011Crystal structure refinement of a sepiolite/indigo Maya Blue pigment using molecular modelling and synchrotron diffractioncitations
- 2011Nanoporous crystalline phases of poly(2,6-dimethyl-1,4-phenylene)oxidecitations
- 2011Combined study of structural properties of metal-organic frameworks changing organic linkers and metal centers
- 2011Aerogels and polymorphism of isotactic poly(4-methyl-pentene-1)citations
- 2011Structure and thermodynamic properties of the NaMgH3 perovskitecitations
- 2011Structure-activity relationships of simple molecules adsorbed on MOF materials: in situ experiments vs. theory
- 2010Hydrogen adsorption by δ and ε crystalline phases of syndiotactic polystyrene aerogelscitations
- 2010Storage of hydrogen as a guest of a nanoporous polymeric crystalline phasecitations
- 2010Hydrogen adsorption by delta and epsilon crystalline phases of syndiotactic polystirene aerogelscitations
- 2009CO adsorption on CPO-27-Ni coordination polymer: spectroscopic features and interaction energycitations
- 2009CO adsorption on cpo-27-ni coordination polymercitations
- 2008Oriented TiO2 nanostructured pillar arrayscitations
- 2008Local structure of CPO-27-Ni metallorganic framework upon dehydration and coordination of NOcitations
Places of action
Organizations | Location | People |
---|
article
Hydrogen adsorption by δ and ε crystalline phases of syndiotactic polystyrene aerogels
Abstract
<p>The H<sub>2</sub> uptake from s-PS samples exhibiting different crystalline phases and different morphologies has been studied by gravimetric measurements at 77 K in the hydrogen pressure range from 0 up to 1.7 MPa and compared with molecular simulations relative to s-PS crystals. Gravimetric experiments show that the molecular hydrogen sorption is strongly dependent on the sample morphology and is maximum for low-density polymer aerogels. However, independently of the morphology, the H<sub>2</sub> uptake is minimum for the dense β and γ crystalline phases, intermediate for the channel-shaped nanoporous ε phase, and maximum for the cavity-shaped nanoporous δ phase. In particular, although the two nanoporous crystalline phases present essentially the same density (0.98 g/cm<sup>3</sup>), the hydrogen uptake from the δ phase is roughly double with respect to the uptake from the ε phase, both for powders and for aerogels. Infrared measurements and molecular simulations well agree with these quantitative sorption data and clearly indicate that, for both low and high pressure, the hydrogen molecules are preferentially adsorbed into the nanoporous crystalline phases. In particular, molecular simulations indicate that the maximum average hydrogen uptake is of nearly 3 molecules per cavity of the δ phase and of nearly 3.5 molecules per unit height of the channels of the ε phase.</p>