Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Turunen, Ossi

  • Google
  • 1
  • 9
  • 147

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2007Phase behavior and temperature-responsive molecular filters based on self-assembly of polystyrene-block-poly(N-isopropylacrylamide)-block-polystyrene147citations

Places of action

Chart of shared publication
Rytelä, Marjaana
1 / 1 shared
Laukkanen, Antti
1 / 3 shared
Nykänen, Antti
1 / 4 shared
Tenhu, Heikki
1 / 35 shared
Mezzenga, Raffaele
1 / 15 shared
Hirvonen, Sami-Pekka
1 / 9 shared
Ikkala, Olli
1 / 33 shared
Ruokolainen, Janne
1 / 23 shared
Nuopponen, Markus
1 / 5 shared
Chart of publication period
2007

Co-Authors (by relevance)

  • Rytelä, Marjaana
  • Laukkanen, Antti
  • Nykänen, Antti
  • Tenhu, Heikki
  • Mezzenga, Raffaele
  • Hirvonen, Sami-Pekka
  • Ikkala, Olli
  • Ruokolainen, Janne
  • Nuopponen, Markus
OrganizationsLocationPeople

article

Phase behavior and temperature-responsive molecular filters based on self-assembly of polystyrene-block-poly(N-isopropylacrylamide)-block-polystyrene

  • Turunen, Ossi
  • Rytelä, Marjaana
  • Laukkanen, Antti
  • Nykänen, Antti
  • Tenhu, Heikki
  • Mezzenga, Raffaele
  • Hirvonen, Sami-Pekka
  • Ikkala, Olli
  • Ruokolainen, Janne
  • Nuopponen, Markus
Abstract

This work describes the synthesis of temperature-responsive polystyrene-block-poly(N-isopropylacrylamide)-block-polystyrene triblock copolymers, i.e., PS-b-PNIPAM-b-PS, their self-assembly and phase behavior in bulk, and demonstration of aqueous thermoresponsive membranes. A series of PS-b-PNIPAM-b-PS triblock copolymers were synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization. The hydrophobic PS end blocks were selected to form the minority component, whereas the temperature-responsive PNIPAM midblock accounted for the majority component. The self-assembly and phase behavior in bulk of PS-b-PNIPAM-b-PS as well as selected blends with low molecular weight PNIPAM homopolymers were studied using transmission electron microscopy (TEM). Classical lamellar, cylindrical, spherical, and bicontinuous double gyroid morphologies were observed in the dried state. In aqueous solutions, the glassy PS domains act as physical cross-links, and hydrogels were therefore formed. The bulk block copolymer morphology had a strong effect on the degree of swelling in aqueous solutions upon cooling below the coil-globule transition temperature of the PNIPAM midblock. Bulk compositions with spherical PS domains and PNIPAM continuous phase swelled in water up to 58 times by weight, whereas composition having cylindrical PS domains or bicontinous gyroid structure in bulk swelled 20 or 10 times by weight, respectively. Finally, lamellar compositions did not show any swelling. Composite membranes for separation studies were prepared by spin-coating thin films of PS-b-PNIPAM-b-PS on top of meso/macroporous polyacrylonitrile (PAN) support membrane. The permeability was measured as a function of temperature using aqueous mixture of poly(ethylene glycol) (PEG) with several well-defined molecular weights. The permeability showed a temperature switchable on/off behavior, where higher permeability is obtained below transition temperature of PNIPAM, and the molecular cutoff limits for the PEG molecules are surprisingly lowbetween 108 and 660 g/mol. The results encourage to further develop and optimize these materials for responsive nanofiltration applications.

Topics
  • impedance spectroscopy
  • phase
  • thin film
  • composite
  • transmission electron microscopy
  • permeability
  • molecular weight
  • copolymer
  • homopolymer
  • block copolymer
  • self-assembly
  • gyroid