People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sarkisov, Lev
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Improving separation of CH4 and N2 by adsorption on zeolite Y Ion–Exchanged with ammonium Cationscitations
- 2023Craftedcitations
- 2022A data-science approach to predict the heat capacity of nanoporous materialscitations
- 2022A data-science approach to predict the heat capacity of nanoporous materialscitations
- 2011Multiscale Modelling of Biomembrane Interactions with Nano-Objects
- 2009Computer simulation of volatile organic compound adsorption in atomistic models of molecularly imprinted polymerscitations
- 2006The role of diffusion in applications of novel nanoporous materials and in novel uses of traditional materials
- 2004Molecular modelling of adsorption in novel nanoporous metal-organic materialscitations
- 2002Lattice model of adsorption in disordered porous materials:citations
Places of action
Organizations | Location | People |
---|
article
Computer simulation of volatile organic compound adsorption in atomistic models of molecularly imprinted polymers
Abstract
Molecularly imprinted polymers (MIPs) offer a unique opportunity to significantly advance volatile organic compound (VOC) sensing technologies and a number of other applications. However, the development of these applications using MIPs has been hindered by poor understanding of the microstructure of MIPs, geometry of binding sites, and the details of molecular recognition processes in these materials. This is further complicated by the vast number of optimization parameters such as building components and processing conditions. Computer simulations and molecular modeling can help us understand adsorption and binding phenomena in MIPs on the molecular level and thus provide a route to more efficient MIP design strategies. So far, molecular models have been either oversimplified or severely limited in length scale, essentially focusing on a single binding site. Here, we propose a more general, atomistically detailed model that describes the microstructure of MIPs. We apply this model to investigate adsorption of pyridine, benzene, and toluene in MIPs and demonstrate that it is able to capture a number of essential experimental features. Therefore, this model can serve as a starting point in computational design and optimization of MIPs.