Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dymond, Marcus K.

  • Google
  • 2
  • 7
  • 40

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2016Lipid spontaneous curvatures estimated from temperature-dependent changes in inverse hexagonal phase lattice parameters: effects of metal cations16citations
  • 2014Formation of inverse topology lyotropic phases in dioleoylphosphatidylcholine/oleic acid and dioleoylphosphatidylethanolamine/oleic acid binary mixtures24citations

Places of action

Chart of shared publication
Gillams, Richard J.
2 / 2 shared
Nylander, Tommy
2 / 21 shared
Attard, George
2 / 3 shared
Labrador, Ana
1 / 2 shared
Parker, Duncan
1 / 1 shared
Burrell, James
1 / 1 shared
Plivelic, Tomás S.
1 / 10 shared
Chart of publication period
2016
2014

Co-Authors (by relevance)

  • Gillams, Richard J.
  • Nylander, Tommy
  • Attard, George
  • Labrador, Ana
  • Parker, Duncan
  • Burrell, James
  • Plivelic, Tomás S.
OrganizationsLocationPeople

article

Formation of inverse topology lyotropic phases in dioleoylphosphatidylcholine/oleic acid and dioleoylphosphatidylethanolamine/oleic acid binary mixtures

  • Plivelic, Tomás S.
  • Gillams, Richard J.
  • Nylander, Tommy
  • Attard, George
  • Dymond, Marcus K.
Abstract

The addition of saturated fatty acids (FA) to phosphatidylcholine lipids (PC) that have saturated acyl chains has been shown to promote the formation of lyotropic liquid-crystalline phases with negative mean curvature. PC/FA mixtures may exhibit inverse bicontinuous cubic phases (Im3m, Pn3m) or inverse topology hexagonal phases (H-II), depending on the length of the acyl chains/fatty acid. Here we report a detailed study of the phase behavior of binary mixtures of dioleoylphosphatidylcholine (DOPC)/oleic acid (OA) and dioleoylphosphatidylethanolamine (DOPE)/oleic acid at limiting hydration, constructed using small-angle X-ray diffraction (SAXD) data. The phase diagrams of both systems show a succession of phases with increasing negative mean curvature with increasing OA content. At high OA concentrations, we have observed the occurrence of an inverse micellar Fd3m phase in both systems. Hitherto, this phase had not been reported for phosphatidylethanolamine/fatty acid mixtures, and as such it highlights an additional route through which fatty acids may increase the propensity of bilayer lipid membranes to curve. We also propose a method that uses the temperature dependence of the lattice parameters of the H-II phases to estimate the spontaneous radii of curvature (R-0) of the binary mixtures and of the component lipids. Using this method, we calculated the R-0 values of the complexes comprising one phospholipid molecule and two fatty acid molecules, which have been postulated to drive the formation of inverse phases in PL/FA mixtures. These are -1.8 nm (+/-0.4 nm) for DOPC(OA)(2) and -1.1 nm (+/-0.1 nm) for DOPE(OA)(2). R-0 values estimated in this way allow the quantification of the contribution that different lipid species make to membrane curvature elastic properties and hence of their effect on the function of membrane-bound proteins.

Topics
  • crystalline phase
  • phase diagram
  • small-angle X-ray diffraction