People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zagórska, Małgorzata
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022Copolymers Containing 1-Methyl-2-phenyl-imidazole Moieties as Permanent Dipole Generating Units: Synthesis, Spectroscopic, Electrochemical, and Photovoltaic Properties
- 2019Editorial: Special Issue on Electrochemistry of Organic Conductors and Semiconductorscitations
- 2019Synthesis of solution‐processable nanoparticles of inorganic semiconductors and their application to the fabrication of hybrid materials for organic electronics and photonicscitations
- 2016The Influence of the Melt-Pouring Temperature and Inoculant Content on the Macro and Microstructure of the IN713C Ni-Based Superalloycitations
- 2014Alternating copolymers of diketopyrrolopyrrole or benzothiadiazole and alkoxy-substituted oligothiophenes: Spectroscopic, electrochemical and spectroelectrochemical investigationscitations
- 2013Self-assembly properties of semiconducting donor-acceptor-donor bithienyl derivatives of tetrazine and thiadiazole - Effect of the electron accepting central ringcitations
- 2013Alternating copolymers of thiadiazole and quaterthiophenes – Synthesis, electrochemical and spectroelectrochemical characterizationcitations
- 2013Polymers for electronics and spintronicscitations
- 2010Organic semiconductors for field-effect transistors (FETs): Tuning of spectroscopic, electrochemical, electronic and structural properties of naphthalene bisimides via substituents containing alkylthienyl moietiescitations
Places of action
Organizations | Location | People |
---|
article
Self-assembly properties of semiconducting donor-acceptor-donor bithienyl derivatives of tetrazine and thiadiazole - Effect of the electron accepting central ring
Abstract
Scanning tunneling microscopy was used to study the effect of the electron-accepting unit and the alkyl substituent’s position on the type and extent of 2D supramolecular organization of penta-ring donor–acceptor–donor (DAD) semiconductors, consisting of either tetrazine or thiadiazole central acceptor ring symmetrically attached to two bithienyl groups. Microscopic observations of monomolecular layers on HOPG of four alkyl derivatives of the studied adsorbates indicate significant differences in their 2D organizations. Ordered monolayers of thiadiazole derivatives are relatively loose and, independent of the position of alkyl substituents, characterized by large intermolecular separation of acceptor units in the adjacent molecules located in the face-to-face configuration. The 2D supramolecular architecture in both derivatives of thiadiazole is very sensitive to the alkyl substituent’s position. Significantly different behavior is observed for derivatives of tetrazine (which is a stronger electron acceptor). Stronger intermolecular DA interactions in these adsorbates generate an intermolecular shift in the monolayer, which is a dominant factor determining the 2D structural organization. As a consequence of this molecular arrangement, tetrazine groups (A segments) face thiophene rings (D segments) of the neighboring molecules. Monolayers of tetrazine derivatives are therefore much more densely packed and characterized by similar π-stacking of molecules independently of the position of alkyl substituents. Moreover, a comparative study of 3D supramolecular organization, deduced from the X-ray diffraction patterns, is also presented clearly confirming the polymorphism of the studied adsorbates.