People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Skirtach, Andre
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Insights in the structural hierarchy of statically crystallized palm oilcitations
- 2024Insights in the structural hierarchy of statically crystallized palm oilcitations
- 2024From nucleation to fat crystal network : effects of stearic-palmitic sucrose ester on static crystallization of palm oilcitations
- 2024Ratiometric dual-emitting thermometers based on rhodamine B dye-incorporated (nano) curcumin periodic mesoporous organosilicas for bioapplicationscitations
- 2022The influence of Ca/Mg ratio on autogelation of hydrogel biomaterials with bioceramic compoundscitations
- 2022Improving green Yb3+/Er3+ upconversion luminescence by co-doping metal ions into an oxyfluoride matrix
- 2022Hybrid lanthanide-doped rattle-type thermometers for theranosticscitations
- 2022Hybrid NaYF4:Er,Yb@NaYF4@nano-MOF@AuNPs@LB composites for Yb3+-Er3+ physiological thermometrycitations
- 2022The influence of bases on thermal decomposition synthesis of LaF3
- 2021Hydrothermal synthesis of barium titanate nano/microrods and particle agglomerates using a sodium titanate precursorcitations
- 2021Combining fat and waxes in hybrid systems for bakery application
- 2020Temperature Window for Encapsulation of an Enzyme into Thermally Shrunk, CaCO3 Templated Polyelectrolyte Multilayer Capsules.citations
- 2020Temperature window for encapsulation of an enzyme into thermally shrunk, CaCO3 templated polyelectrolyte multilayer capsulescitations
- 2020Alkaline phosphatase delivery system based on calcium carbonate carriers for acceleration of ossificationcitations
- 2020Alkaline phosphatase delivery system based on calcium carbonate carriers for acceleration of ossificationcitations
- 2019Piezoelectric 3-D fibrous poly(3-hydroxybutyrate)-based scaffolds ultrasound-mineralized with calcium carbonate for bone tissue engineering : inorganic phase formation, osteoblast cell adhesion, and proliferationcitations
- 2019The effect of hybrid coatings based on hydrogel, biopolymer and inorganic components on the corrosion behavior of titanium bone implants.citations
- 2018Nanostructured biointerfaces based on bioceramic calcium carbonate/hydrogel coatings on titanium with an active enzyme for stimulating osteoblasts growthcitations
- 2012Control of cell adhesion by mechanical reinforcement of soft polyelectrolyte films with nanoparticlescitations
- 2011Neuron cells uptake of polymeric microcapsules and subsequent intracellular releasecitations
- 2011Release properties of pressurized microgel templated capsulescitations
- 2006Preparation of polyelectrolyte microcapsules with silver and gold nanoparticles in a shell and the remote destruction of microcapsules under laser irradiationcitations
Places of action
Organizations | Location | People |
---|
article
Control of cell adhesion by mechanical reinforcement of soft polyelectrolyte films with nanoparticles
Abstract
S.7249-7257 ; Chemical cross-linking is the standard approach to tune the mechanical properties of polymer coatings for cell culture applications. Here we show that the elastic modulus of highly swollen polyelectrolyte films composed of poly(l-lysine) (PLL) and hyaluronic acid (HA) can be changed by more than 1 order of magnitude by addition of gold nanoparticles (AuNPs) in a one-step procedure. This hydrogel-nanoparticle architecture has great potential as a platform for advanced cell engineering application, for example remote release of drugs. As a first step toward utilization of such films for biomedical applications we identify the most favorable polymer/nanoparticle composition for optimized cell adhesion on the films. Using atomic force microscopy (AFM) we determine the following surface parameters that are relevant for cell adhesion, i.e., stiffness, roughness, and protein interactions. Optimized cell adhesion is observed for films with an elastic modulus of about 1 MPa and a surface roughness on the order of 30 nm. The analysis further shows that AuNPs are not incorporated in the HA/PLL bulk but form clusters on the film surface. Combined studies of the elastic modulus and surface topography indicate a cluster percolation threshold at a critical surface coverage above which the film stiffness drastically increases. In this context we also discuss changes in film thickness, material density and swelling ratio due to nanoparticle treatment. ; 28 ; Nr.18