People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Li, Xiaohong
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Transforming CeO2 nanoparticles into ultra small ceria clusters on alumina enhances catalytic activitycitations
- 2014The fabrication of a bifunctional oxygen GDE without carbon components for alkaline secondary batteriescitations
- 2014The fabrication of a bifunctional oxygen electrode without carbon components for alkaline secondary batteriescitations
- 2013A novel bifunctional oxygen GDE for alkaline secondary batteriescitations
- 2011Electrodeposited lead dioxide coatingscitations
- 2010Optimization of the electrodeposition process of high-performance bismuth antimony telluride compounds for thermoelectric applicationscitations
- 2009High density p-type Bi0.5Sb1.5Te3 nanowires by electrochemical templating through ion-track lithographycitations
- 2009High density p-type Bi0.5Sb1.5Te3 nanowires by electrochemical templating through ion-track lithographycitations
Places of action
Organizations | Location | People |
---|
article
Optimization of the electrodeposition process of high-performance bismuth antimony telluride compounds for thermoelectric applications
Abstract
High-quality films of bismuth antimony telluride were synthesized by electrodeposition from nitric acid electroplating baths. The influence of a surfactant, sodium ligninsulfonate, on the structure, morphology, stoichiometry, and homogeneity of the deposited films has been investigated. It was found that addition of this particular surfactant significantly improved the microstructural properties as well as homogeneity of the films with a significant improvement in the thermoelectric properties over those deposited in the absence of surfactant. A detailed microprobe analysis of the deposited films yielded a stoichiometric composition of Bi0.35Sb1.33Te3 for the films electrodeposited in the absence of surfactant and a stoichiometry of Bi0.32Sb1.33Te3 for films deposited in the presence of surfactant