People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bowker, M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2020Investigation of MoOx/Al2O3 under Cyclic Operation for Oxidative and Non-Oxidative Dehydrogenation of Propane
- 2014Hydrogen production by photoreforming of biofuels using Au, Pd and Au–Pd/TiO2 photocatalystscitations
- 2010Influence of Thermal Treatment on Nanostructured Gold Model Catalystscitations
- 2010Effects of the Nanostructuring of Gold Films upon Their Thermal Stabilitycitations
Places of action
Organizations | Location | People |
---|
article
Influence of Thermal Treatment on Nanostructured Gold Model Catalysts
Abstract
We fabricated films of Au onto single crystal alumina (Al2O3(0001)) and nanostructured the surface using a high resolution focused ion beam (FIB) to remove specific regions of the film. The nanostructures consist of lines and orthogonal lines cut into the film, resulting in one- and two-dimensional islands of gold. When these films are heated above 300 degrees C, small nanoparticles of gold form due to the dewetting of the Au film from the alumina surface. The dimensions of these islands are dictated by the nature of the nanopatterning. The isolated islands generally have the smallest nanoparticles after heating, while the unpatterned film has much larger particles. Sintering is reduced within the nanostructured metal domains due to isolation of Au islands from each other. The evaporation rate is higher within these islands, due to the smaller size of nanoparticles and hence the higher effective vapor pressure over the surface (the Kelvin effect).