People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Muir, Benjamin Ward
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023New insight into degradation mechanisms of conductive and thermally resistant polyaniline filmscitations
- 2023Solvent-free Surface Modification of Milled Carbon Fiber using Resonant Acoustic Mixing
- 2023Comparison of Tiling Artifact Removal Methods in Secondary Ion Mass Spectrometry Imagescitations
- 2023Two-Dimensional and Three-Dimensional Time-of-Flight Secondary Ion Mass Spectrometry Image Feature Extraction Using a Spatially Aware Convolutional Autoencodercitations
- 2023Exploring the Relationship between Polymer Surface Chemistry and Bacterial Attachment Using ToF‐SIMS and Self‐Organizing mapscitations
- 2022Applications of multivariate analysis and unsupervised machine learning to ToF-SIMS images of organic, bioorganic, and biological systems
- 2020ToF-SIMS and machine learning for single-pixel molecular discrimination of an acrylate polymer microarray
- 2017Determining the limit of detection of surface bound antibodycitations
- 2015Fundamentals and functional applications of plasma polymer films
- 2012A ToF-SIMS and XPS study of protein adsorption and cell attachment across PEG-like plasma polymer films with lateral compositional gradients
- 2012One step multifunctional micropatterning of surfaces using asymmetric glow discharge plasma polymerisation
- 2012UV grafting of a vinyl monomer onto a methanol plasma polymercitations
- 2010High-Throughput synthesis and screening of self assembled nanoparticles for use as MRI contrast agents (conference poster)
- 2006X-ray and neutron reflectometry study of glow-discharge plasma polymer filmscitations
Places of action
Organizations | Location | People |
---|
article
X-ray and neutron reflectometry study of glow-discharge plasma polymer films
Abstract
Radio-frequency glow-discharge plasma polymer thin films of allylamine (AA) and hexamethyldisiloxane (HMDSO) were prepared on silicon wafers and analyzed by a combination of X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), X-ray reflectometry (XRR), and neutron reflectometry (NR). AFM and XRR measurements revealed uniform, smooth, defect-free films of 20-30 nm thickness. XPS measurements gave compositional data on all elements in the films with the exception of hydrogen. In combination with XRR and NR, the film composition and mass densities (1.46 and 1.09 g cm(-)(3) for AA and HMDSO, respectively) were estimated. Further NR measurements were conducted with the AA and HMDSO films in contact with water at neutral pH. Three different H(2)O/D(2)O mixtures were used to vary the contrast between the aqueous phase and the polymer. The amount of water penetrating the film, as well as the number of labile protons present, was determined. The AA film in contact with water was found to swell by approximately 5%, contain approximately 3% water, and have approximately 24% labile protons. The HDMSO polymer was found to have approximately 6% labile protons, no thickness increase when in contact with water, and essentially no solvent penetration into the film. The difference in the degree of proton exchange within the films was attributed to the substantially different surface and bulk chemistries of the two films.