Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Castañeda, Maria Teresa

  • Google
  • 1
  • 5
  • 122

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2005Magnetically trigged direct electrochemical detection of DNA hybridization using Au67 quantum dot as electrical tracer122citations

Places of action

Chart of shared publication
Pividori Gurgo, María Isabel
1 / 32 shared
Pumera, Martin
1 / 15 shared
Alegret, Salvador
1 / 25 shared
Merkoçi, Arben
1 / 18 shared
Eritja, Ramon
1 / 1 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Pividori Gurgo, María Isabel
  • Pumera, Martin
  • Alegret, Salvador
  • Merkoçi, Arben
  • Eritja, Ramon
OrganizationsLocationPeople

article

Magnetically trigged direct electrochemical detection of DNA hybridization using Au67 quantum dot as electrical tracer

  • Castañeda, Maria Teresa
  • Pividori Gurgo, María Isabel
  • Pumera, Martin
  • Alegret, Salvador
  • Merkoçi, Arben
  • Eritja, Ramon
Abstract

A novel gold nanoparticle-based protocol for detection of DNA hybridization based on a magnetically trigged direct electrochemical detection of gold quantum dot tracers is described. It relies on binding target DNA (here called DNA1) with Au67 quantum dot in a ratio 1:1, followed by a genomagnetic hybridization assay between Au67-DNA1 and complementary probe DNA (here called DNA2) marked paramagnetic beads. Differential pulse voltammetry is used for a direct voltammetric detection of resulting Au 67 quantum dot-DNA1/DNA2-paramagnetic bead conjugate on magnetic graphite-epoxy composite electrode. The characterization, optimization, and advantages of the direct electrochemical detection assay for target DNA are demonstrated. The two main highlights of presented assay are (1) the direct voltammetric detection of metal quantum dots obviates their chemical dissolution and (2) the Au67 quantum dot-DNA1/DNA2-paramagnetic bead conjugate does not create the interconnected three-dimensional network of Au-DNA duplex-paramagnetic beads as previously developed nanoparticle DNA assays, pushing down the achievable detection limits. © 2005 American Chemical Society.

Topics
  • nanoparticle
  • impedance spectroscopy
  • gold
  • composite
  • quantum dot
  • pulse voltammetry